Welche Art von Stahl eignet sich für Druckgussformen?? Ein vollständiger Auswahlleitfaden

CNC-Räumen

Die Wahl des richtigen Stahls für Druckgussformen ist entscheidend für die Lebensdauer der Form, Teilequalität, und Produktionseffizienz. Druckgussformen sind rauen Bedingungen ausgesetzt – hohen Temperaturen (bis zu 600°C für Aluminiumlegierungsguss), wiederholte thermische Zyklen, und mechanischer Verschleiß – daher muss der Stahl eine hohe Festigkeit aufweisen, Verschleißfestigkeit, Hitzeermüdungsbeständigkeit, und Verarbeitbarkeit. Dieser Artikel bricht zusammen […]

Die Wahl des richtigen Stahls für Druckgussformen ist entscheidend für die Lebensdauer der Form, Teilequalität, und Produktionseffizienz. Druckgussformen sind rauen Bedingungen ausgesetzt – hohen Temperaturen (bis zu 600°C für Aluminiumlegierungsguss), wiederholte thermische Zyklen, and mechanical wear—so the steel must balance hohe Festigkeit, Verschleißfestigkeit, Hitzeermüdungsbeständigkeit, Und Verarbeitbarkeit. This article breaks down the best steel options for different scenarios, compares their key properties, and provides actionable selection tips to solve your mold material challenges.

1. Core Performance Requirements for Die Casting Mold Steel

Before exploring specific steel types, it’s essential to understand the non-negotiable performance metrics—these form the basis of your selection. Use the table below to clarify priorities based on casting material and production volume:

Performance MetricDefinitionCriticality for Different Scenarios
Heat Fatigue ResistanceAbility to withstand repeated heating/cooling without cracking★★★★★ (Aluminum/ magnesium alloy casting: 300–600°C thermal cycles)
VerschleißfestigkeitResistance to surface abrasion from molten metal flow★★★★☆ (Großserienproduktion: >100,000 Zyklen)
ToughnessAbility to resist impact and deformation under high pressure★★★★☆ (Large molds or thick-walled parts: high clamping pressure)
VerarbeitbarkeitEase of machining (Mahlen, Bohren) und Polieren★★★☆☆ (Complex mold cavities: requires fine surface finish)
KorrosionsbeständigkeitResistance to chemical attack from molten metal or coolants★★★☆☆ (Zinc alloy casting: molten zinc may corrode steel)

2. Top Steel Types for Die Casting Molds: Vergleich & Use Cases

Not all steels are equal—each type excels in specific scenarios. Below is a detailed breakdown of the most widely used options, organized by “general-purpose” and “specialized” categories for clarity.

2.1 General-Purpose High-Performance Steels (Most Common Choices)

These steels balance all key properties and work for 80% of die casting applications (z.B., aluminum alloy molds, medium-volume production).

Steel TypeKey CharacteristicsVorteileIdeale Anwendungsfälle
H13 SteelExcellent high-temperature hardness (HRC 48–52 after heat treatment)- Stable chemical composition- Good impact resistance and processabilityBalances toughness and wear resistance- Suitable for complex-shaped molds- Low maintenance costLarge molds (z.B., automotive engine blocks), core components (mold cores, guide columns), aluminum alloy die casting (100,000–500,000 cycles)
H11 SteelHigh thermal strength (retains hardness at 600°C)- Strong hardness adjustability (HRC 45–50)- Easy to machine and repairFrequent maintenance-friendly (low rework difficulty)- Performs well in medium-temperature cyclesLarge molds requiring regular maintenance (z.B., household appliance casings), zinc alloy die casting
8407 StahlOutstanding thermal stability (minimal distortion after heat treatment)- Good cutting performance- Hohe Verschleißfestigkeit (better than H13 for small features)Delivers consistent part quality over long runs- Suitable for precision moldsSmall and medium-sized molds (z.B., Gehäuse für elektronische Bauteile), high-hardness requirements (HRC 50–54), aluminum/magnesium alloy casting

Beispiel: H13 vs. 8407 for Aluminum Alloy Molds

For a 500,000-cycle aluminum wheel mold:

  • H13 Steel: Lower upfront cost, easier to machine complex spoke details, but may show minor wear after 400,000 Zyklen.
  • 8407 Stahl: 15–20% longer lifespan (bis zu 600,000 Zyklen), better surface finish retention, but 10–15% higher material cost.

2.2 Specialized Steels for Unique Requirements

These steels address extreme needs—such as high precision, lange Lebensdauer, or corrosion resistance—where general-purpose steels fall short.

Steel TypeKey CharacteristicsVorteileIdeale Anwendungsfälle
S136 Steel– Ausgezeichnete Korrosionsbeständigkeit (Chromgehalt >13%)- Good high-temperature stability- Polishes to mirror-like surface finish (Ra <0.02 μm)Prevents zinc alloy corrosion- No surface rust from coolantsSmall/medium molds with high surface finish requirements (z.B., cosmetic parts), zinc alloy die casting
NAK80 SteelNickel-alloy tool steel- High resistance to high-temperature deformation- Superior cutting performance (no heat treatment needed for machining)Maintains dimensional stability in 400–500°C cycles- Reduces machining time by 20–30%High-precision molds (z.B., Sensorgehäuse), parts requiring tight tolerances (<±0,01 mm)
718 StahlOptimized microstructure via special annealing- Hohe Härte (HRC 48–52) und Ermüdungsbeständigkeit- Good weldability for mold repairsLong lifespan for medium-volume production (200,000–300,000 cycles)- Low risk of cracking during repairSmall/medium precision parts (z.B., Smartphone-Rahmen), aluminum alloy die casting
8418 Stahl– Hohe Reinheit (low sulfur content)- Low silicon, high molybdenum ratio- Excellent erosion and crack resistanceWithstands rapid cold-heat cycles (z.B., furniture handle electroplating molds)- No surface cracking after 300,000+ ZyklenMolds requiring long-term durability, parts with frequent temperature fluctuations

2.3 Premium Steels for Extreme Demands

For molds with ultra-high lifespan or product quality requirements (z.B., Teile für die Luft- und Raumfahrt, 1,000,000+ Zyklen), these advanced steels are worth the investment:

  • DIEVAR Steel: Refined via electroslag furnace (ESR) Verfahren, it has enhanced toughness and ductility. Inhibits crack propagation, making it ideal for large, high-pressure molds (z.B., heavy-duty automotive components).
  • DAC55 Steel: Similar to H13 but with higher chromium content, it offers 25% better heat fatigue resistance. Perfect for aluminum alloy casting with frequent thermal shocks.
  • 1.8433 Stahl: A European-grade hot-work tool steel with excellent wear resistance and processability. Used in precision molds for medical device parts.

3. Other Optional Materials: Vorteile & Nachteile

If budget or production scale limits your choice, consider these alternatives—but be aware of their trade-offs:

MaterialtypKey CharacteristicsVorteileNachteileIdeale Anwendungsfälle
Legierter StahlHohe Festigkeit, good hardness (HRC 45–50)Suitable for high-demand parts (auto components)- Better mechanical properties than carbon steelDifficult to machine (requires specialized tools)- High cost (2–3x more than H13)Hochwertig, high-output production (100,000+ Zyklen)
Schnellarbeitsstahl (HSS)Good cutting performance, low material cost– Erschwinglich (1/3 the cost of H13)- Easy to machine for simple moldsShort lifespan (≤50,000 cycles)- Easy wear and deformation at high temperaturesSmall/medium batches (≤10,000 parts), ordinary precision requirements
Cast SteelExcellent mechanical properties, niedrige KostenCheap (1/4 the cost of H13)- Suitable for large molds (z.B., industrial machine housings)Long processing cycle (3–4x longer than H13)- Low precision (Toleranzen >±0,1 mm)Groß, low-precision die castings (z.B., heavy equipment frames)

4. Step-by-Step Guide to Select Die Casting Mold Steel

Follow this linear, actionable process to choose the right steel for your project—no more guesswork:

Schritt 1: Define Core Requirements

Start by answering 3 critical questions:

  1. What metal are you casting? (Aluminum = prioritize heat fatigue; zinc = prioritize corrosion resistance)
  2. What’s the production volume? (High volume >500,000 cycles = choose 8418/DIEVAR; geringe Lautstärke <10,000 = HSS/cast steel)
  3. What’s the mold complexity? (Complex cavities = prioritize processability; z.B., H13/NAK80)

Schritt 2: Balance Performance and Cost

Use the “cost-performance ratio” rule:

  • Für 80% of standard applications (Aluminium, 100,000–300,000 cycles), H13 Steel is the best value—it meets all requirements without premium costs.
  • For precision or corrosion needs, upgrade to S136 (Zink) oder NAK80 (high-precision aluminum)—the extra cost is offset by reduced rework and longer lifespan.

Schritt 3: Verify Processability

Ensure the steel can be machined to your mold’s design:

  • Complex cavities with fine details: Avoid hard-to-machine alloys (z.B., DAC55) unless necessary—opt for NAK80 or H13.
  • Large molds requiring welding repairs: Wählen 718 Stahl (excellent weldability) to avoid cracking during maintenance.

Die Perspektive von Yigu Technology

Bei Yigu Technology, we believe die casting mold steel selection is about aligning material properties with real-world production needs. For most clients (Automobil, Unterhaltungselektronik), Wir empfehlen H13 Steel as the starting point—it balances cost, Leistung, and processability for aluminum alloy molds. Für hochpräzise Teile (z.B., 5G device housings), we upgrade to NAK80 to ensure dimensional stability in 400–500°C cycles. For zinc alloy clients, S136 Steel is non-negotiable to prevent corrosion. We also factor in production volume: for runs >500,000 Zyklen, we suggest 8418 Stahl—its crack resistance cuts mold replacement costs by 30%. Letztlich, the goal isn’t just choosing “good steel”—it’s choosing steel that maximizes mold lifespan and minimizes total production cost.

FAQ

  1. Can I use H13 Steel for zinc alloy die casting?

H13 Steel works for low-volume zinc casting (<50,000 Zyklen) but is not ideal for long runs. Molten zinc can corrode H13 over time, leading to surface defects. For zinc alloy molds, S136 Steel (with high chromium content) is better—it resists corrosion and maintains surface finish.

  1. How much longer does DIEVAR Steel last compared to H13?

DIEVAR Steel, refined via ESR, has 30–40% longer lifespan than H13 in high-temperature aluminum casting. Zum Beispiel, an H13 mold may last 300,000 Zyklen, while DIEVAR can reach 400,000–450,000 cycles—ideal for high-volume production where mold replacement is costly.

  1. Is high-speed steel (HSS) a viable option for small-batch die casting?

Ja, HSS is suitable for small batches (<10,000 Teile) with ordinary precision. It’s cheap and easy to machine, making it cost-effective for prototypes or low-volume runs. Jedoch, avoid HSS for high-temperature casting (aluminum/magnesium)—it wears quickly, leading to inconsistent part quality after 5,000–10,000 cycles.

Index
Scrollen Sie nach oben