Zinc die casting and aluminum die casting are two of the most widely used metal-forming processes, each dominating distinct niches in manufacturing. While both rely on high pressure to inject molten metal into molds, their differences in material properties, Prozessanforderungen, and end-product performance make them suited for entirely different applications—from tiny precision electronics parts to large automotive structural components. Aber was genau unterscheidet sie? How do these differences impact cost, Effizienz, und Teilqualität? And how do you choose the right process for your project? This article answers these questions with detailed comparisons and actionable insights.
1. Material Basis: Core Properties That Define Performance
The fundamental difference between the two processes lies in their base materials—zinc alloys and aluminum alloys—whose unique traits shape every aspect of die casting. The table below breaks down their key properties:
Materielles Eigentum | Zinklegierungen (Z.B., Lasten 3, Lasten 5) | Aluminiumlegierungen (Z.B., ADC12, ADC10) |
Zusammensetzung | Zinc-based, with added aluminum (3.5–4.3%), Kupfer (0.75–1,25%), and magnesium (0.03–0,08%) | Aluminum-based, with silicon (9.5–12 %), Kupfer (1.5–3,5 %), und Eisen (≤1,3 %) |
Schmelzpunkt | Niedrig (380–420°C) | Hoch (680–720°C) |
Dichte | Hoch (6.6–6.8 g/cm³) | Niedrig (2.7 g/cm³)—1/2.5 that of zinc |
Zugfestigkeit | Mäßig (280–320 MPA) | Höher (300–350 MPa for heat-treated grades) |
Duktilität | Exzellent (Verlängerung: 10–15 %)—resists impact without cracking | Gut (Verlängerung: 2–5% for non-heat-treated; bis zu 10% for heat-treated) |
Wärmeleitfähigkeit | Niedrig (105–115 W/m·K) | Hoch (120–150 W/m·K)—better for heat-dissipating parts |
Surface Treatment Adaptability | Outstanding—ideal for electroplating, Chrombeschichtung, and high-gloss painting | Moderate—challenged by porosity; best for anodizing, Pulverbeschichtung, or baking paint |
2. Prozessparameter: Ausrüstung, Effizienz, and Control
Material properties directly influence process requirements—from the type of die casting machine to production speed and defect risks.
A. Auswahl der Ausrüstung & Aufstellen
Prozessaspekt | Zinkstirsche | Aluminium -Sterben |
Maschinenart | Verwendung hot chamber die casting machines—the injection chamber is permanently immersed in molten zinc. This eliminates the need for separate metal feeding steps. | Verwendung cold chamber die casting machines—molten aluminum is poured into a separate injection chamber (to avoid melting the machine components). |
Clamping Force | Untere (50–200 Tonnen)—sufficient for small, dünnwandige Teile. | Höher (200–1,200 tons)—needed to handle high-pressure filling of large, Komplexe Teile. |
Schimmelmaterial | Can use lower-cost H13 steel—low melting point reduces mold wear. | Requires heat-resistant mold materials (Z.B., H13 steel with nitriding treatment)—high temperatures demand better durability. |
Mold Preheating Requirement | Hoch (150–200 ° C.)—prevents cold isolation defects (molten zinc solidifying too quickly on cold mold surfaces). | Mäßig (200–250 ° C.)—balances heat retention and rapid solidification for large parts. |
B. Produktionseffizienz & Kosten
Efficiency Metric | Zinkstirsche | Aluminium -Sterben |
Zykluszeit | Schnell (15–30 seconds per part)—low melting point speeds up solidification. | Langsamer (30–60 Sekunden pro Teil)—higher melting point requires longer cooling. |
Materialnutzung | Hoch (90–95 %)—minimal scrap from runners and gates (easily recyclable). | Mäßig (80–85%)—more scrap from porosity defects and larger runners. |
Pro Stückkosten (Kleine Teile) | Untere (\(0.1- )0.5 pro Teil)—fast cycles and low energy use reduce costs. | Höher (\(0.3- )1.0 pro Teil)—slower cycles and higher energy consumption increase costs. |
Energieverbrauch | Niedrig (30–50 kWh per 100 Teile)—no need to reheat metal for each cycle. | Hoch (80–120 kWh per 100 Teile)—requires continuous heating of aluminum to high temperatures. |
3. Product Performance: Qualität, Haltbarkeit, and Application Fit
The choice between zinc and aluminum die casting often comes down to the part’s required performance—whether it needs to be lightweight, wirkungsbeständig, or visually appealing.
A. Teilmerkmale & Einschränkungen
Part Trait | Zinkstirsche | Aluminium -Sterben |
Size Range | Ideal for small parts (0.1–500g)—e.g., electronic connector housings, Spielzeugräder. | Suited for large parts (500g–10kg)—e.g., Automotorblöcke, EV -Batterierahmen. |
Wandstärke | Excels at ultra-thin walls (0.5–2mm)—low melting point ensures uniform filling. | Handles thicker walls (2–10 mm)—better for structural parts but struggles with <1mm Dicke. |
Präzision | Hoch (Toleranz: ± 0,05 mm)—excellent for parts requiring tight fits (Z.B., Beobachten Sie Komponenten). | Gut (Toleranz: ± 0,1 mm)—sufficient for most structural parts but less precise than zinc. |
Defect Risks | Low—minimal porosity (thanks to low melting point and slow filling). Risks include cold shuts if mold is underheated. | Higher—prone to porosity (from turbulent filling) and shrinkage (from high cooling rates). Requires vacuum casting to reduce defects. |
Schlagfestigkeit | Superior—can withstand drops and vibrations (Z.B., phone case hinges, door lock mechanisms). | Moderate—may crack under heavy impact; better for static load-bearing parts (Z.B., Klammern). |
B. Typische Anwendungsszenarien
The table below maps each process to its ideal industry and part types, based on performance needs:
Industrie | Zink -Würfel -Casting -Anwendungen | Aluminum Die Casting Applications |
Elektronik | – USB-Anschlussgehäuse- Phone button housings- Laptop hinge components- Sensor casings | – Kühlkörper (hohe thermische Leitfähigkeit)- 5G router frames (leicht)- Power adapter enclosures |
Automobil | – Small functional parts (door lock mechanisms, wiper linkages)- Innenausstattung (high-gloss plated parts)- Stecknadeln | – Engine blocks and cylinder heads- Übertragungsgehäuse- Body structural parts (lightweight for EVs)- Battery pack frames |
Konsumgüter | – High-end hardware (Wasserhahngriffe, Schrankknöpfe)- Toy joints and moving parts- Kosmetische Verpackung (plated finishes) | – Küchengeräte (Mixerbasen, oven door frames)- Outdoor -Möbel (Wetterresistent)- Gepäckrahmen (Leicht und stark) |
Luft- und Raumfahrt & Medizinisch | – Tiny precision parts (medical device connectors, aircraft instrument knobs) | – Leichte strukturelle Teile (Luft- und Raumfahrtklammern)- Medical equipment frames (korrosionsbeständig) |
4. Selection Strategy: So wählen Sie den richtigen Prozess aus
To avoid costly mistakes, follow this 4-step framework to select between zinc and aluminum die casting:
Schritt 1: Define Part Requirements
- Größe & Gewicht: <500g → Zinc; >500g → Aluminum.
- Weight Priority: Need lightweight (Z.B., EV-Teile) → Aluminum; weight not critical → Zinc.
- Schlagfestigkeit: Hoch (Z.B., handheld devices) → Zinc; niedrig (Z.B., static brackets) → Aluminum.
Schritt 2: Evaluate Surface & Precision Needs
- High-Gloss/Plated Finish: Erforderlich (Z.B., Dekorative Hardware) → Zinc; not required → Aluminum.
- Toleranz: ±0.05mm or tighter (Z.B., Elektronik) → Zinc; ±0.1mm acceptable → Aluminum.
Schritt 3: Betrachten Sie das Produktionsvolumen
- Low-Medium Volume (<100,000 Teile): Zink (lower mold costs and faster setup).
- Hochvolumen (>100,000 parts): Aluminium (cost per part decreases with scale, offsetting higher initial investment).
Schritt 4: Calculate Total Cost of Ownership
- Zink: Lower upfront costs (Maschine + Schimmel) but higher material costs (denser, uses more metal per part).
- Aluminium: Higher upfront costs but lower material costs (leichter, uses less metal) and better long-term efficiency for large batches.
5. Yigu Technology’s Perspective on Zinc vs. Aluminium -Sterben
Bei Yigu Technology, we see zinc and aluminum die casting as complementary tools—each solving unique customer needs. For electronics clients needing tiny, präzise Teile (Z.B., USB -Anschlüsse), our hot chamber zinc die casting lines deliver 99.5% yield rates and cycle times of 18 Sekunden/Teil. For automotive clients requiring large structural components (Z.B., battery frames), our cold chamber aluminum lines (equipped with vacuum degassing) reduce porosity to <0.5% and meet IATF 16949 Standards.
We’re advancing two key innovations: 1) Hybrid mold designs for zinc casting (reducing tooling costs by 30% für kleine Chargen); 2) AI-driven parameter control for aluminum casting (optimizing filling speed to cut defects by 25%). Our goal is to help clients look beyond “cost alone” and choose the process that aligns with their part’s function, Lebensdauer, and market positioning—delivering value that extends beyond production.
FAQ
- Can I use zinc die casting for heat-dissipating parts (Z.B., LED -Kühlkörper)?
No—zinc’s low thermal conductivity (105 W/m · k) makes it poor at transferring heat. Aluminium (120–150 W/m·K) is far better for heat-dissipating parts. Zum Beispiel, an aluminum LED heat sink keeps temperatures 20–30°C lower than a zinc equivalent.
- Is aluminum die casting more expensive than zinc die casting for small parts?
Yes—for parts <500G, aluminum’s slower cycle time (30–60s vs. 15–30s for zinc) and higher energy use increase per-part costs by 30–50%. Jedoch, if the part needs to be lightweight (Z.B., EV electronics), aluminum’s weight savings may offset the higher cost long-term.
- Can zinc die casting parts be heat-treated to improve strength?
No—zinc alloys do not respond well to heat treatment; it can cause brittleness or deformation. Aluminiumlegierungen (Z.B., ADC12) can be heat-treated (Z.B., T6 process) to increase tensile strength by 15–20%, making them better for load-bearing parts.