Was sind die Verarbeitungskosten für Druckguss und ihre wichtigsten Einflussfaktoren??

Harnstoff-Formaldehydharz-CNC-Bearbeitung

Die Druckgussverarbeitungskosten beziehen sich auf die Gesamtkosten für die Herstellung von Druckgussteilen, die Materialbeschaffung abdeckt, Gerätebetrieb, Schimmel verwenden, Arbeit, und Nachbearbeitung. Es variiert stark – zum Beispiel, aluminum alloy parts processed by a 200-ton machine may cost ~\(0.45/kg, während komplexe Kupferlegierungsteile mit hohen Präzisionsanforderungen übertreffen können \)5/kg. Diese große Lücke ergibt sich daraus […]

Die Druckgussverarbeitungskosten beziehen sich auf die Gesamtkosten für die Herstellung von Druckgussteilen, die Materialbeschaffung abdeckt, Gerätebetrieb, Schimmel verwenden, Arbeit, und Nachbearbeitung. Es variiert stark – zum Beispiel, aluminum alloy parts processed by a 200-ton machine may cost ~\(0.45/kg, während komplexe Kupferlegierungsteile mit hohen Präzisionsanforderungen übertreffen können \)5/kg. This huge gap stems from multiple interrelated factors. But what exactly makes up the cost? How do different factors affect the final price? And how can you get an accurate quotation to control costs? This article answers these questions with detailed data and practical guidance.

1. Breakdown of Die Casting Processing Cost: Core Components

Die casting processing cost is not a single figure—it consists of 5 mutually influencing components. The table below details each part, its proportion, and calculation basis:

Cost ComponentTypical Proportion (Total Cost)Calculation Method & Key DetailsBranchen-Benchmarks (Aluminiumlegierungen)
Materialkosten50–60 %(Raw material price + waste loss rate × raw material price) × part weight- Waste loss rate: 8–15 % (depends on process; higher for complex parts)Raw aluminum price: \(2.5–)3/kg; total material cost per kg part: \(2.7–)3.45
Equipment Operation Cost15–20 %(Machine hourly energy consumption × electricity price + machine depreciation) ÷ hourly output- Machine depreciation: Calculated over 8–10 years (200-ton machine: ~$80,000 initial cost)200-ton machine: \(0.15–)0.2/kg; 300-ton machine: \(0.25–)0.35/kg
Mold Cost5–10 %(Mold manufacturing cost + maintenance cost) ÷ total production quantity- Mold life: 50,000–100,000 shots (aluminum alloy molds)Simple mold: \(5,000–)10,000; complex mold (with sliders): \(20,000–)50,000
Labor Cost8–12%(Number of workers × hourly wage) ÷ hourly output- Automation level affects labor needs: Fully automated lines need 1–2 workers/line; semi-automated need 3–5Hourly wage: \(15–)25; labor cost per kg part: \(0.12–)0.3
Post-Processing Cost5–15 %Cost of cutting, Sandstrahlen, Überzug, oder Wärmebehandlung- Complexity drives cost: Simple deburring is cheap; precision CNC machining is expensiveEntgraten: \(0.05–)0.1/kg; Sandstrahlen + Überzug: \(0.5–)1.2/kg

2. Key Pricing Models for Die Casting Processing

Manufacturers use 2 main pricing models to calculate costs—each suitable for different scenarios. The table below compares their pros, Nachteile, und ideale Anwendungsfälle:

Pricing ModelCalculation FormulaVorteileDisadvantagesIdeal für
Equipment Tonnage-Based PricingCost per kg = Base rate (per tonnage) + material premium (if using non-aluminum alloys)- Beispiel: 200-ton machine: \(0.45/kg; 300-ton machine: \)0.65/kgEinfach, fast calculation; easy for customers to understandIgnores part complexity; may overcharge for simple partsLarge-batch, einfache Teile (z.B., Kfz-Halterungen, grundlegende Hardware)
Itemized Costing (Precision Quotation)Total cost = Material cost + equipment cost + Formkosten + labor cost + post-processing cost + profit margin (10–15 %)Accurate; reflects part-specific requirements; fair for both partiesTime-consuming; requires detailed part information (Zeichnungen, Materialien)Komplex, hochpräzise Teile (z.B., Komponenten medizinischer Geräte, Teile für die Luft- und Raumfahrt)

3. Core Factors Influencing Die Casting Processing Cost

Multiple factors cause cost fluctuations—some can increase expenses by 30% oder mehr. Below is a detailed analysis of 6 key factors with quantitative impacts:

A. Materialtyp (Biggest Cost Driver)

Different metals have vastly different prices and process requirements:

  • Aluminiumlegierungen: Lowest cost (\(2.7–)3.45/kg material cost); einfach zu verarbeiten; ideal for most general parts.
  • Zinklegierungen: Slightly higher cost (\(3.5–)4.2/kg material cost); good for small, Präzise Teile (z.B., Elektronikgehäuse).
  • Kupferlegierungen: High cost (\(8–)10/kg material cost); requires higher temperature and pressure; used for heat-conducting parts (z.B., Kühlkörper).
  • Magnesiumlegierungen: Premium cost (\(6–)7.5/kg material cost); lightweight but requires strict safety measures (flammable); used in aerospace/automotive lightweight parts.

B. Part Complexity & Design

Complex designs increase mold, Arbeit, and post-processing costs:

  • Structural Complexity: Parts with sliders, hydraulic core pulling, or insert installation add 20–50% to mold cost. Zum Beispiel, a part with 2 sliders costs 30% more than a simple part of the same weight.
  • Wall Thickness: Uneven wall thickness (ratio >3:1) reduces production efficiency by 15–25% (more rework needed), increasing labor and equipment costs.
  • Precision Requirements: Tolerances tighter than ±0.1mm require precision machining, hinzufügen \(0.3–)0.8/kg to post-processing cost.

C. Order Volume (Critical for Cost Reduction)

Larger batches lower unit costs due to economies of scale:

  • Kleine Chargen (<10,000 Teile): High unit cost—mold cost is spread over fewer parts. Zum Beispiel, A \(10,000 mold for 5,000 parts adds \)2/part to the cost.
  • Medium Batches (10,000–50,000 parts): Balanced cost—mold and equipment costs are spread reasonably; manufacturers may offer 5–10% discounts.
  • Große Chargen (>50,000 Teile): Lowest unit cost—automation is feasible, labor costs drop, and material suppliers offer volume discounts (5–15% off raw material prices).

D. Mold Condition & Wartung

Poor mold condition increases rework and scrap rates, driving up costs:

  • New Molds: Low scrap rate (<2%); no extra maintenance cost in the first 10,000 shots.
  • Worn Molds: Scrap rate rises to 5–8%; require monthly maintenance (\(200–)500/Schimmel) to fix gaps or surface damage.
  • Customer-Supplied Molds: If the mold needs debugging (z.B., adjusting core position) or overhaul (z.B., Austausch verschlissener Komponenten), additional costs of \(500–)2,000 may apply.

E. Post-Processing Requirements

Additional operations significantly increase costs—each step adds 5–15% to the total:

Post-Processing StepCost Impact (Per kg Part)Zweck
Entgraten (Handbuch)\(0.05–)0.1Scharfe Kanten entfernen
CNC-Bearbeitung\(0.8–)2Achieve high precision (±0,05 mm)
Sandstrahlen\(0.2–)0.4Improve surface roughness (Ra <1.6μm)
Überzug (chrome/nickel)\(0.8–)1.5Enhance corrosion resistance and aesthetics
Wärmebehandlung (T6)\(0.3–)0.6Increase tensile strength (from 200MPa to 300MPa+)

F. Regional Cost Differences

Labor, electricity, and rent vary by region, affecting overall costs:

  • North America/Europe: High costs—electricity (\(0.15–)0.25/kWh), Arbeit (\(15–)25/Stunde); total cost per kg part: \(4–)6.
  • Asien (China, Vietnam): Lower costs—electricity (\(0.05–)0.1/kWh), Arbeit (\(5–)10/Stunde); total cost per kg part: \(2–)4.
  • South America: Medium costs—electricity (\(0.1–)0.15/kWh), Arbeit (\(8–)12/Stunde); total cost per kg part: \(3–)5.

4. Praktischer Leitfaden: How to Get an Accurate Quotation & Control Costs

To avoid overpaying and ensure cost transparency, follow these 4 Schritte:

Schritt 1: Prepare Detailed Information for Manufacturers

Bieten 3 key pieces of data to get a precise quote:

  • 2D/3D Drawings: Include dimensions, Toleranzen (z.B., ±0,1 mm), and structural details (z.B., number of sliders).
  • Material Specifications: Clarify alloy type (z.B., A380 aluminum, Belastungen 5 Zink) and quality standards (z.B., ASTM, ISO).
  • Order Details: Annual purchase volume, delivery schedule, and post-processing requirements (z.B., “need sandblasting + T6 heat treatment”).

Schritt 2: Compare Quotations Smartly

Don’t just choose the cheapest—evaluate 5 factors:

  1. Cost Breakdown: Ask for a detailed breakdown (Material, Ausrüstung, Schimmel, usw.) to check for hidden fees.
  2. Ausrüstungsmöglichkeiten: Ensure the manufacturer has machines matching your part’s needs (z.B., 300-ton machine for large parts).
  3. Quality Certifications: Look for ISO 9001 (Qualität) or IATF 16949 (Automobil) to avoid rework costs from poor quality.
  4. Vorlaufzeit: Longer lead times may mean higher inventory costs; choose manufacturers with 2–4 week lead times for standard parts.
  5. After-Sales Service: Check if they offer mold maintenance or defect replacement—this reduces long-term costs.

Schritt 3: Negotiate for Cost Savings

Use these 3 strategies to lower costs without compromising quality:

  • Volume Commitments: Promise annual volumes >50,000 parts to get 10–15% discounts on unit costs.
  • Long-Term Partnerships: Sign 1–2 year contracts for stable pricing (avoids raw material price fluctuations).
  • Designoptimierung: Work with the manufacturer to simplify designs (z.B., reduce sliders, balance wall thickness) to cut mold and process costs by 15–20%.

Schritt 4: Monitor Costs During Production

Track 3 key metrics to avoid cost overruns:

  • Ausschussrate: Keep it <3% (Branchendurchschnitt); higher rates mean wasted materials and labor.
  • Mold Maintenance Frequency: Schedule maintenance every 10,000 shots to prevent unexpected downtime (Kosten \(500–)2,000/Stunde).
  • Materialverschwendung: Optimize part nesting (arrange multiple parts in one mold) to reduce waste loss rate from 15% to 8–10%.

5. Yigu Technology’s Perspective on Die Casting Processing Cost

Bei Yigu Technology, we believe cost control in die casting is about balancing precision, Qualität, and efficiency—not just cutting expenses. Für Automotive-Kunden, our itemized costing model (mit 100% transparent breakdowns) and design optimization services reduced their total costs by 18%. For medical device manufacturers, we use shared molds (für kleine Chargen) to lower mold cost per part by 40%, while maintaining ISO 13485 Qualitätsstandards.

We’re advancing two cost-saving innovations: 1) AI-driven process optimization (reduces scrap rate to <2% and energy consumption by 12%); 2) Modular mold design (allows mold components to be reused across parts, cutting mold cost by 25%). Our goal is to help clients get high-quality die cast parts at competitive prices—turning cost control into a competitive advantage.

FAQ

  1. Why does the same part have different quotes from different manufacturers?

Quotes vary due to 4 factors: 1) Equipment efficiency (newer machines have lower operation costs); 2) Regional labor/electricity prices; 3) Quality standards (ISO-certified manufacturers charge more for better quality); 4) Mold reuse (manufacturers with existing similar molds offer lower quotes). Always ask for a cost breakdown to compare apples to apples.

  1. How much does mold cost affect the unit price of small-batch parts?

Für kleine Chargen (<10,000 Teile), mold cost is a major factor. Zum Beispiel, A \(10,000 mold for 5,000 parts adds \)2/part to the unit cost—this can double the total price. To reduce this impact, ask about shared molds (split mold cost with other clients) or short-life molds (günstiger, für <5,000 shots).

  1. Can post-processing be skipped to save costs?

It depends on the part’s use: 1) Non-visible, non-load-bearing parts (z.B., internal brackets) can skip sandblasting/plating (spart \(0.5–)1.2/kg); 2) Visible parts (z.B., consumer electronics housings) need surface treatment to avoid aesthetics issues; 3) Load-bearing parts (z.B., Automobilstrukturteile) require heat treatment (cannot skip—this ensures strength and safety). Skipping necessary post-processing leads to higher defect rates and long-term costs.

Index
Scrollen Sie nach oben