Was ist Druckgussformen und wie treibt sie die moderne Fertigung voran??

Aluminium-CNC-Bearbeitung

Die Druckgussformung ist ein Grundpfeiler der modernen Metallverarbeitung, revolutioniert die Produktion komplexer, hoch – Präzisionsteile in allen Branchen. Indem geschmolzenes Metall unter hohem Druck und hoher Geschwindigkeit in Präzisionsformen gepresst wird, Dieses Verfahren schließt die Lücke zwischen traditionellem Guss und fortschrittlicher Fertigung. Damit Sie seinen Wert voll und ganz erfassen können, Prinzipien, und Anwendungen, […]

Die Druckgussformung ist ein Grundpfeiler der modernen Metallverarbeitung, revolutioniert die Produktion komplexer, hoch – Präzisionsteile in allen Branchen. Indem geschmolzenes Metall unter hohem Druck und hoher Geschwindigkeit in Präzisionsformen gepresst wird, Dieses Verfahren schließt die Lücke zwischen traditionellem Guss und fortschrittlicher Fertigung. Damit Sie seinen Wert voll und ganz erfassen können, Prinzipien, und Anwendungen, this article breaks down die casting forming from definition to future trends, with actionable insights for practical use.

1. What Exactly Is Die Casting Forming?

Im Kern, die casting forming is a highpressure metal casting technique designed for efficiency and precision. Let’s clarify its key attributes through a structured overview:

AspectKey Details
Core PrincipleMolten metal is injected into a precision mold cavity at high pressure (10 – 200 MPa) and high speed (5 – 10 MS), then solidifies rapidly to take the mold’s shape.
KernvorteileCombines the complex shape capability of traditional casting with the hohe Maßgenauigkeit of plastic processing, enabling onetime forming of thinwalled, komplizierte Teile.
Suitable MaterialsPrimarily non – Eisenmetalle: Aluminiumlegierung (most widely used), Zinklegierung, Magnesiumlegierung, Und Kupferlegierung.
Typical Part FeaturesDünne Wände (oft 1 – 5 mm), komplexe Geometrien (z.B., side concaves, Threads), und enge Toleranzen (IT6IT8).

2. Der Schritt – von – Step Die Casting Forming Process

Die casting forming follows a linear, sequential workflow that ensures consistency and quality. Each step is critical to the final product, wie unten gezeigt:

2.1 Mold Pretreatment

The process starts with preparing the mold, which directly impacts part release and surface quality:

  • Vorheizen: Molds are heated to a materialspecific temperature (z.B., 180 – 250°C for aluminum alloy molds, < 150°C for zinc alloy molds) to balance heat conduction and extend mold life.
  • Release Agent Spraying: Eine dünne, uniform layer of release agent (z.B., Graphit – based coatings) is applied to create an isolation layer, preventing molten metal from sticking to the mold and aiding demolding.

2.2 Metal Melting and Distribution

Nächste, the raw metal is prepared to ensure optimal fluidity and purity:

  1. Material Batching: Metal ingots are accurately weighed according to the target alloy composition (z.B., aluminum alloy with specific silicon or magnesium content).
  2. Melting and Degassing: The metal is melted in a furnace (aluminum at 650 – 700°C, zinc at 400 – 450°C) and treated to remove impurities and gases (z.B., using argon gas to reduce hydrogen content).
  3. Halten: The molten metal is kept in a holding furnace at a stable temperature to avoid fluctuations that could harm fluidity.

2.3 Hoch – Pressure Injection

This is the defining step of die casting, where molten metal is forced into the mold:

  • A pressure injection mechanism pushes the molten metal into the mold cavity at speeds up to 5 – 10 MS.
  • Pressure curve control is crucial: Too little pressure leads to incomplete filling, while too much can cause mold damage or turbulence (which traps air).

2.4 Pressure Holding and Cooling

After filling, the process shifts to ensuring part integrity:

  • Pressure Holding: Continuous pressure is applied to compensate for volume shrinkage während der Erstarrung, suppressing defects like shrinkage cavities.
  • Rapid Cooling: Watercooled or aircooled molds accelerate solidification, reducing cycle times (from a few seconds to tens of seconds) and ensuring dimensional stability.

2.5 Mold Opening and Post – Verarbeitung

Endlich, the finished part is extracted and refined:

  • Entformen: Once the part is initially solidified, Die Form öffnet sich, and the part is ejected.
  • Trimmen: Überschüssiges Material (z.B., gates, risers) is cut off using specialized tools.
  • Abschluss: Entgraten, Polieren, or surface treatments (z.B., Galvanisieren, spraying) are performed. Wärmebehandlung (z.B., stress relief annealing) may also be used to improve mechanical properties.

3. Key Process Parameters That Control Die Casting Quality

Process parameters act as thedialsthat finetune die casting forming. Misalignment here is a top cause of defects. The table below highlights critical parameters, their optimal ranges, and risks of improper settings:

ParameterOptimal RangeImproper Setting Risks
Einspritzdruck10 – 200 MPa (depends on alloy/part complexity)Too Low: Incomplete filling, especially in thinwalled areas.- Too High: Mold damage, increased internal stress in parts.
Einspritzgeschwindigkeit5 – 10 MS (balanced for no splashing)Too Fast: Turbulence, air entrapment (causes porosity).- Too Slow: Premature solidification, flow marks.
FormtemperaturMaterial – specific (180 – 250°C for Al, < 150°C for Zn)Too Low: Poor surface finish, difficult demolding.- Too High: Longer cycle times, mold deformation.
Molten Metal Temperature650 – 700°C (Al), 400 – 450°C (Zn)Too Low: Reduced fluidity, incomplete filling.- Too High: Oxidation of metal, mold erosion.

4. Die Casting Forming vs. Other Manufacturing Processes

To understand its unique value, let’s compare die casting forming with three common alternatives using a contrastbased structure:

VerfahrenEntscheidender VorteilKey DisadvantageAm besten für
Die Casting FormingHohe Präzision (IT6IT8), fast cycle times, komplexe FormenLimited to non – Eisenmetalle, hohe Formkosten (für kleine Chargen)Massproduced, hoch – Präzisionsteile (z.B., phone middle frames, Motorteile)
Sand CastingGeringe Formkosten, flexible for large partsLow precision (IT12IT14), rough surface (Ra > 6.3 μm)Klein – batch large parts (z.B., heavy machinery housings)
SpritzgussSimilar efficiency to die casting, low part costsOnly for plastics, not metalsPlastic parts (z.B., Spielzeugkomponenten, Kunststoffgehäuse)
Gravity CastingSimple equipment, low pressurePoor filling of thin walls, slow cycle timesDick – walled, lowcomplexity metal parts (z.B., some plumbing fixtures)

5. Common Defects in Die Casting Forming and How to Fix Them

Even with precise control, defects can occur. Below is a causal analysis of top issues and actionable solutions:

DefectMain CausesLösungen
Porosity/LoosenessAir entrapment during highspeed filling; high gas content in molten metalOptimize exhaust tank design to release air.- Verwenden Vakuum-Druckguss to extract cavity air.- Enhance degassing during metal melting (z.B., argon purging).
Shrinkage CavitiesInadequate pressure holding; uneven coolingExtend pressure holding time and increase pressure.- Add overflow grooves and replenishment channels.- Ensure uniform mold cooling (avoid hot spots).
CracksRapid cooling causing thermal stress; alloy segregationSlow down mold cooling rate in highstress areas.- Add grainrefining elements (z.B., titanium in aluminum alloys).- Perform postcasting age treatment to relieve stress.
Mold Sticking/StrainRough mold surface; 失效 release agentRegularly polish the mold cavity to reduce roughness.- Replace with high – Leistung, Material – compatible release agent.- Control mold temperature to prevent agent breakdown.

6. Yigu Technology’s Perspective on Die Casting Forming

Bei Yigu Technology, we see die casting forming as more than a manufacturing process—it’s a catalyst for industrial efficiency and innovation.

Erste, wir priorisieren intelligent process control: We integrate realtime monitoring systems (pressure sensors, infrared thermometers) into die casting machines to track parameters like mold temperature and injection speed. This allows instant adjustments, cutting defect rates by up to 30% compared to traditional manual control.

Zweite, we advocate for green die casting: We promote technologies like semisolid die casting and vacuum die casting, which reduce metal waste by 15% and energy consumption by 20%—aligning with global sustainability goals.

Endlich, we focus on Material – process synergy: We work with clients to select the right alloy (z.B., hoch – strength aluminum for automotive lightweighting) and tailor process parameters, ensuring parts meet both performance and cost targets. Für uns, die casting forming is not just about making parts—it’s about empowering manufacturers to stay competitive in a fastchanging market.

7. FAQ (Häufig gestellte Fragen)

Q1: Is die casting forming suitable for small – Serienfertigung?

A1: Generally, NEIN. Die casting requires high upfront mold costs (due to precision machining). Für kleine Chargen (z.B., < 1,000 Teile), the cost per part is too high. Sand casting or CNC machining is more economical. Jedoch, for batches > 10,000, die casting’s fast cycle times make it cost – wirksam.

Q2: Can die casting forming produce parts with thick walls?

A2: It’s not ideal. Die casting relies on rapid cooling, so thick walls (z.B., > 10 mm) are prone to shrinkage cavities and internal porosity. For thickwalled parts, gravity casting or investment casting is better. Die casting excels at thin walls (1 – 5 mm) where rapid cooling ensures quality.

Q3: How long does a die casting mold last?

A3: Mold life depends on material and usage: For zinc alloy die casting, molds can last 500,000 – 1,000,000 Zyklen; for aluminum alloy, 100,000 – 500,000 Zyklen. Regelmäßige Wartung (Polieren, lubrication, checking for wear) extends life—we recommend a monthly inspection schedule for highvolume production.

Index
Scrollen Sie nach oben