Was sind gängige Werkzeuge, die bei der CNC-Bearbeitung verwendet werden?, So wählen Sie sie aus?

CNC-Fräsdrehen

In der CNC-Bearbeitung – sei es für Luft- und Raumfahrtkomponenten, medizinische Geräte, oder Automobilteile – die gängigen Werkzeuge, die bei der CNC-Bearbeitung verwendet werden, bestimmen direkt die Bearbeitungseffizienz, Oberflächenqualität, und Produktionskosten. Diese Tools sind keine zufällige Sammlung; Sie sind nach Funktion kategorisiert (Mahlen, Bohren, drehen) und auf Materialeigenschaften abgestimmt (weiches Aluminium vs. harter Stahl) und Prozessanforderungen (Schruppen vs. Abschluss). […]

In der CNC-Bearbeitung – sei es für Luft- und Raumfahrtkomponenten, medizinische Geräte, or automotive parts—the common tools used in CNC machining directly determine machining efficiency, Oberflächenqualität, und Produktionskosten. Diese Tools sind keine zufällige Sammlung; Sie sind nach Funktion kategorisiert (Mahlen, Bohren, drehen) und auf Materialeigenschaften abgestimmt (weiches Aluminium vs. harter Stahl) und Prozessanforderungen (Schruppen vs. Abschluss). This article breaks down the core tool categories, their key features, Anwendungsszenarien, and practical selection strategies, helping you avoid mismatches and optimize your machining workflow.

1. What Are the Core Categories of Common CNC Machining Tools?

CNC machining tools are mainly divided into four functional categories, each covering multiple specialized types. Below is a clear breakdown to help you quickly identify the right tool for your task:

Tool CategoryKey FunctionsTypical Tool TypesSuitable Machining Processes
FräswerkzeugeRemove material from workpiece surfaces; Shape flat, gebogen, or grooved featuresFace mills, round nose mills, flat bottom mills, ball end mills, chamfer millsMahlen (vertical/horizontal machining centers); Contour shaping; Cavity machining
Drilling ToolsCreate holes of different diameters; Finish hole accuracy and surface qualityStandard twist drills, Zentrierbohrer, U-drills, Reibahlen, WasserhähneBohren; Hole finishing; Thread machining
Drehen & Langweilige WerkzeugeMachine cylindrical, konisch, or hole features on lathes; Achieve high-precision hole diametersTurning tools, fine boring tools, rough boring toolsDrehen (CNC-Drehmaschinen); Langweilig (for existing holes); Grooving on cylindrical parts
Specialized ToolsHandle unique features or materials; Reduce tool changes and improve efficiencyThread cutters, slot milling cutters, Umformwerkzeuge, engraving toolsThread machining; Keyway/T-groove cutting; Custom feature shaping; Fine engraving

2. What Are the Key Features and Applications of Milling Tools?

Milling tools are the most versatile in CNC machining, used for everything from large-area roughing to precision contouring. Below is a detailed guide to the most common types:

2.1 Common Milling Tools: Merkmale & Use Cases

Milling Tool TypeCore FunctionKey CharacteristicsIdeal Application ScenariosMaterialkompatibilität
Face MillLarge-area roughing/finishing of flat surfacesMulti-flute design (4-12 flutes)- Large diameter (φ20-100mm)- High material removal rateMachining automotive engine blocks (flat top surfaces)- Finishing mold bases (Ra 1.6-3.2μm)Alle Metalle (Aluminium, Stahl, Titan); Best for large flat parts
Round Nose MillBalanced roughing + corner clearing; Complex contour machiningRounded cutting edge (radius 0.5-10mm)- Avoids sharp corner damageMachining shallow cavities with rounded edges (z.B., electronic device housings)- Medium-area material removal (50-100cm² parts)Aluminiumlegierungen (soft materials); Stahl (with coated blades)
Flat Bottom MillStraight wall + straight bottom machining; Sharp corner formingFlat cutting edge (no radius)- Subdivided into: • Aluminum mills (focus on side edge sharpness) • Tungsten steel mills (for hard materials)Machining straight-wall grooves (z.B., keyways in shafts)- Finishing rectangular cavities (z.B., sensor mounting slots)Aluminum mills: Al/Mg alloys; Tungsten steel mills: 45# Stahl, Edelstahl
Ball End MillCurved surface machining; Complex contour trimmingHemispherical cutting edge- Improves surface finish via step adjustment (stepover 10-20% of tool diameter)Machining aerospace turbine blade curves- Engraving 3D patterns on mold insertsAlle Metalle; Best for curved surfaces (z.B., optical lens molds)
Chamfer MillChamfer cutting; Entgraten; Countersink machiningFixed angles (30°, 45°, 60°)- Single/multi-flute optionsDeburring hole edges (prevents part damage during assembly)- Machining countersinks for screws (z.B., Möbelbeschläge)Alle Metalle; Universal for post-processing

3. How to Select Drilling Tools for Different Hole Requirements?

Drilling tools are critical for hole creation, but choosing the wrong type leads to low accuracy or broken tools. Below is a selection guide based on hole depth, Präzision, und Material:

3.1 Drilling Tool Comparison: Precision vs. Effizienz

Drilling Tool TypePrimary UsePräzisionsniveauEffizienzKey Limitations
Standard Twist DrillUniversal pre-drillingNiedrig (diameter tolerance: ±0,1 mm)Hoch (fast drilling speed: 100-300mm/min)Cannot achieve high precision; Needs reaming for tight tolerances
Center DrillHigh-precision hole positioningHoch (Positionierungsgenauigkeit: ±0,02 mm)Medium (slow feed rate: 20-50mm/min)Only for positioning; Cannot drill deep holes (>5mm)
U-Drill (Violent Drill)Deep hole machining (depth-to-diameter ratio >5:1)Medium (Toleranz: ±0,05 mm)Very high (one-pass drilling; Center outlet cooling)Not suitable for shallow holes (<3x diameter); Requires high-pressure coolant
ReamerHole finishing; Correcting verticalityVery high (Toleranz: ±0,01 mm; Ra <0.8μm)Niedrig (slow feed rate: 10-30mm/min)Cannot change hole position; Requires pre-drilled holes (90-95% of final diameter)
TapInternal thread machiningMedium-high (thread tolerance: 6H/7H)MediumCutting taps: Für weiche Materialien (Aluminium); Produce chips- Forming taps: Für harte Materialien (Stahl); No chips (better for blind holes)

4. What Are the Must-Know Turning & Boring Tools for Lathe Machining?

Turning and boring tools are essential for cylindrical parts and hole refinement on CNC lathes. Below is a breakdown of their key roles:

Tool TypeFunctionKey ParametersAnwendungsbeispiele
Turning ToolOuter circle, inner circle, and grooving machiningCutting edge angle: 30-90°- Insert material: Hartmetall (für Stahl); PCD (für Aluminium)Turning automotive drive shafts (outer circle diameter φ50-100mm)- Grooving for O-rings (groove width 2-5mm)
Fine Boring ToolPrecision hole finishingAdjustable edge position (±0,001 mm)- Oberflächenbeschaffenheit: Ra <0.4μmFinishing hydraulic cylinder holes (tolerance H7)- Machining bearing seats (Rundheit <0.005mm)
Rough Boring ToolRough boring or reamingLarge cutting volume (depth of cut 1-3mm)- Toleranz: ±0,1 mmPre-processing engine cylinder bores (before fine boring)- Enlarging existing holes (from φ20mm to φ30mm)

5. How to Choose the Right CNC Machining Tool: Eine Schritt-für-Schritt-Anleitung

Choosing tools randomly leads to 30-50% höhere Kosten (due to rework or tool breakage). Follow this 4-step process for optimal selection:

Schritt 1: Define Machining Requirements

Clarify core goals to narrow down tool types:

  • If roughing: Prioritize tools with high material removal rates (z.B., Planfräser, U-drills).
  • If finishing: Choose tools with sharp edges and high precision (z.B., ball end mills, Reibahlen).
  • If hole machining: Match tool to hole depth (U-drill for deep holes) und Präzision (reamer for tight tolerances).

Schritt 2: Match Tool to Material Properties

Soft and hard materials require different tool materials:

Workpiece MaterialRecommended Tool MaterialKey Reason
Aluminum/Magnesium Alloys (Weich)PCD (polykristalliner Diamant) or high-speed steel (HSS)PCD has ultra-sharp edges; Avoids material adhesion
Steel/Stainless Steel (Hart)Tungsten carbide (with TiAlN coating) or CBN (kubisches Bornitrid)Coated carbide resists wear; CBN handles high temperatures
Titanlegierungen (Difficult-to-Cut)Ultra-fine grain carbide (with TaN coating)Hohe Härte (HRC70) und Hitzebeständigkeit

Schritt 3: Consider Machine Tool Performance

Ensure tools match your CNC machine’s capabilities:

  • Spindelgeschwindigkeit: High-speed spindles (>15,000 rpm) work best with PCD tools (für Aluminium); Low-speed spindles need carbide tools (für Stahl).
  • Coolant system: U-drills require high-pressure coolant (30-50MPa); Micro lubrication suits ball end mills (reduces chip adhesion).

Schritt 4: Evaluate Cost-Efficiency

Balance tool life and price:

  • Großserienproduktion: Invest in durable tools (z.B., coated carbide) to reduce tool changes (spart 20-30% in labor time).
  • Low-volume, kundenspezifische Teile: Use universal tools (z.B., standard twist drills) instead of expensive custom tools (cuts tool costs by 40-60%).

6. Yigu Technology’s Perspective on Common Tools Used in CNC Machining

Bei Yigu Technology, wir sehen common tools used in CNC machining as the “silent efficiency drivers”—the right tool choice can cut production time by 20-40% while improving quality. Our data shows 70% of machining defects (z.B., schlechte Oberflächenbeschaffenheit, hole deviation) come from tool-material mismatches, not machine errors.

We recommend a “scenario-driven” tool selection approach: For auto part manufacturers, we pair tungsten steel flat bottom mills with 45# Stahl (reducing tool wear by 50%); For medical device clients, we use PCD ball end mills for titanium alloys (Ra erreichen <0.2μm for implants). We also help clients build tool life trackers (via IoT sensors) to replace tools before failure—avoiding costly rework. Letztlich, tool selection isn’t just about “buying the best”—it’s about “matching the right tool to the right task.”

7. FAQ: Common Questions About CNC Machining Tools

Q1: Can I use a ball end mill for flat surface machining instead of a face mill?

Technically yes, but it’s inefficient. Ball end mills have a smaller cutting area (only the tip contacts the surface), so machining a 100mm×100mm flat surface takes 3-5x longer than a face mill. Face mills also produce smoother surfaces (Ra 1.6μm vs. Ra 3.2μm for ball end mills) and last longer—they’re the better choice for flat surfaces.

Q2: Why do forming taps work better for hard materials (z.B., Edelstahl) than cutting taps?

Forming taps use cold extrusion to shape threads (no chip removal), while cutting taps remove material to create threads. Für harte Materialien, cutting taps are prone to chip clogging (causing broken taps) and edge wear (reducing thread quality). Forming taps avoid these issues—they produce stronger threads (20-30% höhere Zugfestigkeit) and last 2-3x longer than cutting taps for stainless steel.

Q3: How often should I replace common CNC tools (z.B., Hartmetall-Schaftfräser)?

It depends on tool type and material:

  • Carbide face mills (für Stahl): Replace after 80-120 minutes of cutting (or when surface roughness worsens to Ra >3.2μm).
  • PCD ball end mills (für Aluminium): Last 300-500 Minuten (replace when edge chipping is visible).
  • Standard twist drills: Replace after 50-80 Löcher (or if drilling force increases suddenly, indicating dull edges).

Always track tool life with a log—don’t wait for tool breakage (which can damage workpieces).

Index
Scrollen Sie nach oben