Die casting defects—from surface blemishes to internal cracks—cost manufacturers an average of 5–12% of annual production value (industry data). These flaws not only force rework or scrapping but also compromise part performance, especially for safety-critical components like automotive sensors or aerospace brackets. While processes like hot chamber die casting (for low-melting alloys) or cold chamber die casting (for high-melting metals) have unique defect risks, most issues stem from shared pain points: Konstruktionsfehler der Form, parameter mismatches, or material inconsistencies. But what do these common defects look like? Was sie verursacht? And how can you fix or prevent them? This article answers these questions with detailed classifications, Beispiele für reale Welt, and actionable solutions.
1. Classification of Common Die Casting Defects: 5 Core Categories
Die casting defects are grouped by their location (surface vs. intern) and root cause. The table below breaks down 5 key categories, with defect characteristics, high-incidence areas, and visual cues:
Fehlerkategorie | Specific Defect | Schlüsselmerkmale | High-Incidence Areas | Erkennungsmethode |
Filling Defects | Unterbesetzung | Metal liquid fails to fill the cavity; incomplete part shape or cavities. | End of castings, narrow deep cavities (Z.B., USB connector slots). | Visuelle Inspektion; Dimensionsmessung (part shorter than design). |
Kalte Trennung | Low-temperature metal flows dock but don’t fuse; irregular linear gaps (may penetrate); often with flow marks or surface bubbles. | Thick-thin wall transitions (Z.B., Automobilsensorgehäuse). | Visuelle Inspektion; Ultraschalltests (Ut) for hidden gaps. | |
Flussmarkierungen | First-entering metal forms a thin layer; covered by subsequent metal, leaving flow-direction traces; partial sunken feel. | Große flache Oberflächen (Z.B., laptop hinge bases); near gates. | Visuelle Inspektion; touch test (detects slight depressions). | |
Surface Damage Defects | Abrasion (Strain) | Surface scars from metal adhesion or insufficient mold draft; severe cases have cracks. | Mold release direction (Z.B., cylindrical part edges). | Visuelle Inspektion; magnifying glass (10×) for fine scars. |
Pockmarks | Small pockmark-like areas; rough surface texture. | Caused by low mold/alloy temperature during filling. | Visuelle Inspektion; Oberflächenrauheitstester (Ra >6.3μm indicates defects). | |
Mesh Burrs | Mesh-shaped bulges and metal burrs; caused by mold thermal fatigue. | Mold parting surfaces (Z.B., zinc alloy faucet handles). | Visuelle Inspektion; edge feel (detects sharp burrs). | |
Abnormal Shape Defects | Depression (Schwindung) | Concave areas on smooth surfaces; often with dimples. | Thick-walled areas or wall thickness transitions (Z.B., battery terminal bases). | Visuelle Inspektion; Laserscanning (measures surface flatness). |
Verformung (Warping) | Overall/partial geometry mismatch with design; Z.B., bent brackets. | Dünnwandige Teile (Z.B., LED -Kühlkörper); large flat components. | Dimensionstests (Z.B., calipers for bending angle); CMM (Koordinatenmessmaschine). | |
Wrong Edge (Mismatch) | Relative displacement on both sides of the parting surface; step-like gaps. | Mold split lines (Z.B., toy car bodies). | Visuelle Inspektion; feel test (detects step differences). | |
Internal Quality Defects | Schwindung & Loosening | Holes or loose tissue from solidification contraction; niedrige Dichte. | Dickwandige Kerne (Z.B., Motorblockrippen); wall thickness changes. | Röntgenfehlererkennung; Dichteprüfung (lower than material standard). |
Blasen | Gas accumulation under the epidermis; bulging bubbles (may penetrate or be closed); easy to crack when stressed. | Near mold vents (Z.B., 3C part inner cavities). | Röntgenprüfung; Wärmebehandlung (bubbles expand and become visible). | |
Risse | Filamentous gaps; cold cracks (no oxidation, spröde) or hot cracks (oxidized edges, Herzöge). | High-stress areas (Z.B., part corners); Nach Wärmebehandlung. | UT testing; dye penetrant inspection (DPI) für Oberflächenrisse. | |
Other Defects | Blitz (Fluff) | Excess metal flakes on edges or splices; thin and brittle. | Mold parting surfaces, insert gaps (Z.B., bathroom hardware joints). | Visuelle Inspektion; edge trimming (removes excess material). |
Imprinting | Uneven marks from pusher/insert splicing; Z.B., circular dents from ejector pins. | Pusher contact areas (Z.B., part bottoms). | Visuelle Inspektion; touch test (detects unevenness). | |
Colored Spots | Heterochromatic spots (Z.B., Schwarz, braun); caused by paint carbides or punch oil. | Surface of decorative parts (Z.B., zinc alloy toy casings). | Visuelle Inspektion; solvent wiping (tests if spots are removable). | |
Schichtung (Spannen) | Obvious metal layers inside the part; thick flash on parting surfaces. | Caused by multiple metal flow layers not fusing. | Sectioning inspection; Röntgenprüfung (shows layer boundaries). |
2. Ursachen: Why Defects Happen (3 Key Links)
Most die casting defects trace back to failures in Schimmeldesign, Prozessparameter, or material quality. Below is a detailed breakdown of causes for high-frequency defects:
A. Mold Design Flaws (30–40% of Defects)
Mold issues create inherent risks for filling, Oberfläche, and shape defects:
- Insufficient Draft Angle: Draft <1° (for zinc alloys) causes metal adhesion, leading to abrasion (strain) and deformation.
- Poor Gate/Exhaust Design: Small gate size (Z.B., <1mm for thin parts) slows filling, causing undercasting; blocked exhaust grooves (Tiefe <0.2mm) trap gas, leading to bubbles.
- Uneven Cooling Channels: Cooling channel spacing >20mm creates temperature gradients (>30°C), causing cold separation and shrinkage depressions.
- Wärmemüdung: Mold used >100,000 shots without maintenance develops cracks, leading to mesh burrs and layering.
B. Process Parameter Mismatches (40–50% of Defects)
Incorrect settings during casting amplify defect risks—especially for filling and internal defects:
Defekt | Key Parameter Cause | Quantitative Thresholds (Zinklegierungen) |
Unterbesetzung | Low injection pressure/speed; low alloy temperature. | Druck <5MPA; Geschwindigkeit <0.5MS; Temperatur <380° C. |
Kalte Trennung | Slow filling speed; large temperature drop between metal and mold. | Geschwindigkeit <0.8MS; Formtemperatur <150° C (alloy temp 400°C). |
Blasen | High injection speed (Turbulenz); insufficient holding pressure. | Geschwindigkeit >2MS; holding pressure <8MPA. |
Shrinkage Depression | Kurze Haltezeit; low holding pressure. | Haltezeit <5S; Druck <10MPA. |
Verformung | Uneven cooling time; mold opening too early. | Kühlzeit <3S (dünne Teile); mold opening <2s after solidification. |
C. Material Quality Issues (10–20% of Defects)
Impure or unstable materials introduce internal and surface defects:
- Alloy Impurities: Iron content >1.2% (Zinklegierungen) causes hard particles, leading to pockmarks and cracks.
- Moisture/Gas Content: Hydrogen content >0.3cc/100g (Aluminiumlegierungen) creates bubbles during solidification.
- Oxide Slag: Unfiltered molten metal (slag content >0.5%) causes layering and shrinkage loosening.
3. Solution Framework: Fix & Prevent Defects
Resolving die casting defects requires targeted fixes for root causes—follow this 3-step approach for long-term results:
A. Targeted Fixes for High-Frequency Defects
For common defects, use these proven solutions tailored to cause and defect type:
Defekt | Immediate Fix | Langzeitprävention |
Unterbesetzung | Injektionsdruck erhöhen (by 2–5MPa) oder Geschwindigkeit (by 0.2–0.5m/s); raise alloy temperature (by 10–15°C). | Optimize gate size (match to part thickness: gate width = 2× part thickness); clean exhaust grooves weekly. |
Kalte Trennung | Preheat mold to 180–200°C (Zinklegierungen); increase alloy temperature (by 15–20°C); use a larger gate. | Add diversion ribs (angle ≤10°) to guide uniform flow; install mold temperature controllers (±5°C tolerance). |
Blasen | Einspritzgeschwindigkeit reduzieren (by 0.3–0.5m/s); Verlängerung der Haltezeit (by 2–3s); add vacuum exhaust (vacuum degree ≥90kPa). | Use inert gas protection (argon/nitrogen) during melting; filter molten metal with 20-ppi ceramic foam filters. |
Shrinkage Depression | Increase holding pressure (by 3–5MPa); Verlängerung der Haltezeit (by 3–5s); add local cooling channels (near thick walls). | Optimize part design (reduce wall thickness difference to ≤2:1); use risers for thick-walled areas. |
Abrasion (Strain) | Polish mold cavity (Ra ≤1,6μm); increase draft angle to 1.5–2°; apply mold release agent (dünn, uniform layer). | Use wear-resistant mold materials (Z.B., H13 steel for hot chamber dies); coat cavity with TiN (Titannitrid) for zinc alloys. |
B. Formenoptimierung: Build Defect-Resistant Designs
- Entwurfswinkel: Ensure minimum draft of 1° for zinc alloys, 2° for aluminum alloys (prevents abrasion).
- Abgasanlage: Add exhaust grooves (depth 0.1–0.2mm, width 5–10mm) at final filling zones; für komplexe Teile, use vent pins (diameter 0.5–1mm).
- Kühlkanäle: Space channels 15–20mm apart; align with thick-walled areas (Z.B., 5mm from 10mm-thick walls) to reduce temperature gradients.
- Gate Design: Use fan gates for large flat parts (ensures uniform filling); use pinpoint gates (diameter 0.8–1.2mm) for small 3C components.
C. Prozesskontrolle: Stabilize Parameters
- Temperaturregelung:
- Alloy temperature: 380–420°C (Zinklegierungen), 680–720°C (Aluminiumlegierungen); use a digital thermostat (±5°C tolerance).
- Schimmelpilztemperatur: 150–200 ° C. (Zinklegierungen), 200–250 ° C. (Aluminiumlegierungen); monitor with infrared thermal imagers.
- Injektionsparameter:
- Heiße Kammerstirbsguss (Zink): Pressure 10–20MPa, speed 0.5–1.5m/s.
- Cold chamber die casting (Aluminium): Pressure 30–80MPa, speed 2–5m/s.
- Qualitätsprüfungen:
- First-part inspection: Abmessungen überprüfen, Oberfläche, and internal quality (X-ray for critical parts) at the start of each shift.
- Statistische Prozesskontrolle (SPC): Track parameters (Temperatur, Druck) und Fehlerquoten; set control limits (Z.B., ±10% for pressure).
4. Yigu Technology’s Perspective on Common Die Casting Defects
Bei Yigu Technology, we view defects not as failures, but as opportunities to optimize processes. For hot chamber die casting clients (zinc alloy 3C parts), our AI-driven parameter control system—combining real-time temperature monitoring and adaptive pressure adjustment—reduced filling defects (undercasting, Kalte Trennung) aus 8% Zu <1.5%. For cold chamber clients (aluminum automotive parts), our vacuum-assisted exhaust and ceramic foam filtration cut bubble and shrinkage rates by 60%.
We’re advancing two key solutions: 1) Digital twin simulation (MAGMA software) to predict filling defects before mold production; 2) Wear-resistant mold coatings (Tialn) that extend mold life by 50%, reducing mesh burrs. Our goal is to help manufacturers shift from “defect repair” to “defect prevention”—cutting scrap rates to <2% and boosting production efficiency by 15%.
FAQ
- Can surface defects like flow marks or pockmarks be repaired after casting?
Yes—minor flow marks can be removed by mechanical polishing (800–1200-grit sandpaper) oder chemisches Ätzen (für Aluminiumlegierungen). Pockmarks may require putty filling (für nicht kritische Teile), but severe cases need scrapping. We recommend fixing root causes (Z.B., adjusting injection speed) instead of relying on post-repair.
- Why do internal defects like bubbles or shrinkage often go undetected until later?
Internal defects are hidden under the surface—they may only appear after heat treatment (bubbles expand) or stress testing (cracks form). To detect them early, use X-ray flaw detection for critical parts (Z.B., Automobilsensoren) and density testing (ensure ≥99.5% density for aluminum alloys).
- Do common defects differ between hot chamber and cold chamber die casting?
Yes—hot chamber (Zink) is prone to surface defects (abrasion, pockmarks) due to mold adhesion and low pressure; cold chamber (Aluminium) faces more internal defects (Blasen, Schwindung) due to high-temperature metal and turbulent filling. Our solutions are tailored: for hot chamber, we optimize draft and mold release; for cold chamber, we focus on vacuum and filtration.