Die Entwicklung eines Entsafter-Prototypmodells erfordert einen präzisen CNC-Bearbeitungsprozess, um die Rationalität des Designs zu überprüfen, Bauteilpassung testen (z.B., Klingenbaugruppe, Saftflusswege), und bewerten Sie benutzerzentrierte Details (z.B., rutschfeste Unterseite, Tastenlayout). Im Gegensatz zu Großgeräten, Entsafter sind kompakt, multifunktionale Strukturen – von transparenten Saftbechern bis hin zu verschleißfesten Getriebeteilen – die maßgeschneiderte Bearbeitungsstrategien erfordern. In diesem Leitfaden wird der gesamte Arbeitsablauf erläutert, from preliminary design to final assembly, mit Schlüsselparametern, Materialauswahl, and practical tips to ensure prototype success.
1. Vorläufige Vorbereitung: Lay the Foundation for Machining
The success of CNC machining starts with thorough preparation, including 3D modeling, Materialauswahl, and equipment/tool readiness. This stage ensures the subsequent process avoids rework and meets design goals.
(1) 3D-Modellierung: Define Juicer Structure with Precision
Use professional CAD software (z.B., SolidWorks, UG, ProE) to create a detailed 3D model that covers all critical components. The model must balance aesthetic design, functional logic, and machining feasibility.
| Component Category | Key Design Details | Precision Requirements | Zweck |
| Main Body (Shell) | Streamlined contour, rutschfeste Unterseite (groove depth 2mm), button mounting holes (Φ8mm) | Shell dimensional error ±0.2mm; hole position tolerance ±0.1mm | Ensure structural stability; fit control buttons and power components |
| Juice Cup (Transparent) | Inner cavity volume (z.B., 500ml), feeding port (Φ50mm), juice outlet (Φ15mm) | Cavity roundness error ≤0.1mm; wall thickness uniformity ±0.05mm | Ensure smooth juice flow; avoid leakage at connections |
| Tool Holder & Getriebeteile | Blade mounting slot (depth 5mm), gear cavity (for POM gears), motor fixing holes | Slot depth tolerance ±0.05mm; gear cavity clearance 0.1mm | Fit rotating components; ensure smooth blade operation |
Model Optimization Tips:
- Component Splitting: Split integrated structures (z.B., cup body + lid) into independent parts to avoid tool interference. Zum Beispiel, machine the juice cup and its lid separately, then assemble with a sealing ring.
- Process Marking: Label critical features (z.B., “polish inner wall of juice cup”) and reference datums (z.B., base bottom as origin) to guide CNC programming.
- Interference Check: Use software to simulate blade rotation and juice flow—ensure 0.5mm clearance between blade and cup wall to prevent friction.
(2) Materialauswahl: Match Performance to Component Roles
Juicer components have distinct functional needs (Transparenz, Verschleißfestigkeit, Stärke), so material selection is critical. Below is a detailed comparison of suitable options:
| Materialtyp | Applicable Components | Schlüsseleigenschaften | Machinability Advantages |
| ABS-Kunststoff | Main shell, base, lid | Hohe Schlagfestigkeit (Izod strength 20 kj /), leicht zu färben, niedrige Kosten | Low tool wear; machinable at 8,000–12,000 rpm (fast and efficient) |
| PC Plastic | Transparent juice cup, observation window | High transparency (light transmittance ≥88%), schlagfest (10x stärker als Glas) | Precision cutting achievable; minimal edge chipping (≤0.1mm) |
| POM (Polyoxymethylen) | Getriebe, tool holder (wear-resistant parts) | Niedriger Reibungskoeffizient (0.15), hohe Verschleißfestigkeit, good dimensional stability | No deformation during machining; suitable for small transmission parts |
| Aluminiumlegierung (6061) | Motor brackets, metal decorative parts | Hohe Steifigkeit (Zugfestigkeit 276 MPa), korrosionsbeständig | Fast cutting speed; surface can be anodized for enhanced texture |
Material Blank Preparation:
- Cut blanks with 5–10mm machining allowance on all sides to accommodate roughing and finishing:
- A PC juice cup (final size: Φ80mm×120mm) needs a Φ90mm×130mm blank.
- An ABS main shell (200mm×150mm×80mm) requires a 210mm×160mm×90mm blank.
(3) Ausrüstung & Werkzeugvorbereitung: Ensure Machining Accuracy
Select CNC equipment and tools based on component complexity and material properties to avoid defects like tool marks or dimensional deviations.
| Equipment/Tool Type | Selection Criteria | Recommended Specifications |
| CNC Machining Center | 3-axis for flat parts; 5-axis for curved surfaces (z.B., juice cup inner wall) | Positioning accuracy ±0.005mm; spindle speed range 8,000–24,000 rpm |
| Milling Cutters | Solid carbide for plastics; Schnellarbeitsstahl (HSS) for aluminum alloy | – Schruppen: Φ8–Φ12mm flat-bottom mills (schneller Materialabtrag)- Abschluss: Φ2–Φ6mm ball-head mills (gekrümmte Oberflächen); Φ0.5–2mm small mills (logo/buttons) |
| Special Tools | Taper cutters (chamfering juice cup edges); diamond polishers (PC transparency) | Taper angle 45°; diamond polisher grit 1,200# (for PC surface refinement) |
| Fixtures | Vacuum suction cups (flat ABS/PC parts); precision vises (aluminum/POM components) | Vacuum pressure ≥0.8 MPa; vise clamping force ≥3 kN (prevents workpiece displacement) |
2. CNC-Bearbeitungsausführung: From Blank to Prototype Components
This stage divides machining into roughing and finishing to balance efficiency and precision—critical for juicer components with diverse structures.
(1) Grobbearbeitung: Shape the Foundation
Roughing removes most excess material to bring the blank close to the final shape, prioritizing speed while avoiding tool damage.
| Component Type | Roughing Focus | Key Operations & Parameters |
| ABS Main Shell | Machine outer contour, base grooves, button holes | Use Φ10mm flat-bottom mill; Schnittgeschwindigkeit 10,000 rpm, Vorschubgeschwindigkeit 1,200 mm/min; layer depth 3mm |
| PC Juice Cup | Mill outer wall and inner cavity; pre-drill feeding/juice outlets | Use Φ8mm end mill; Schnittgeschwindigkeit 9,000 rpm, Vorschubgeschwindigkeit 800 mm/min; retain 0.5mm finishing allowance |
| POM Gear Cavity | Machine cavity outline and mounting holes | Use Φ6mm end mill; Schnittgeschwindigkeit 8,000 rpm, Vorschubgeschwindigkeit 600 mm/min; avoid overheating (POM melts at 160°C) |
Post-Roughing Inspection:
- Use a digital caliper to check key dimensions (z.B., juice cup diameter, shell height) and ensure they are within ±0.5mm of the design value.
- Clean chips with compressed air—especially critical for PC parts (chips left on surfaces cause scratches during finishing).
(2) Abschluss: Achieve Precision & Oberflächenqualität
Finishing refines components to meet final design requirements, focusing on transparency (PC), smoothness (ABS), und Maßhaltigkeit (POM/aluminum).
| Component Type | Finishing Focus | Key Operations & Parameters |
| PC Juice Cup | Polish inner/outer walls (Transparenz); chamfer edges (prevent sharpness) | Use Φ4mm ball-head mill (inner wall); Schnittgeschwindigkeit 15,000 rpm, Vorschubgeschwindigkeit 500 mm/min; then diamond polish (light transmittance ≥85%) |
| ABS Main Shell | Smooth shell surface; engrave logo/button labels (depth 0.3mm) | Use Φ2mm ball-head mill; Schnittgeschwindigkeit 12,000 rpm, Vorschubgeschwindigkeit 700 mm/min; surface roughness Ra ≤0.8μm |
| POM Gear Cavity | Refine cavity walls; ensure gear clearance (0.1mm) | Use Φ3mm end mill; Schnittgeschwindigkeit 9,000 rpm, Vorschubgeschwindigkeit 500 mm/min; dimensional tolerance ±0.05mm |
Finishing Quality Checks:
- For PC parts: Use a spectrophotometer to verify transparency (≥85%) and a surface roughness tester to confirm Ra ≤0.4μm.
- For POM gear cavities: Use a feeler gauge to check clearance (0.1mm) and ensure gears rotate smoothly without jamming.
3. Nachbearbeitung: Enhance Aesthetics & Funktionalität
Post-processing bridges the gap between machined components and a realistic juicer prototype, focusing on surface refinement and assembly readiness.
(1) Oberflächenbehandlung: Tailor to Material & Component Role
| Material/Component | Surface Treatment Steps | Expected Outcome |
| ABS Main Shell | 1. Sand with 400#→800#→1200# sandpaper (remove tool marks)2. Degrease with isopropyl alcohol3. Spray matte/gloss paint (50µm Dicke) | Paint adhesion ≥4B (kein Abblättern); surface gloss 30–70 GU (per design) |
| PC Juice Cup | 1. Diamond polishing (1,200#→2,000# grit)2. Clean with lens cleaner3. Apply anti-scratch coating | Keine sichtbaren Kratzer; anti-scratch level ≥3H (Bleistifttest) |
| Aluminum Brackets | 1. Degrease with alkaline cleaner2. Anodize (silver-gray, 8–10μm film)3. Sandblast (mattes Finish) | Korrosionsbeständigkeit: No rust after 48-hour salt spray test; friction coefficient ≤0.15 |
| POM Gear Parts | No additional treatment (naturally smooth surface) | Friction coefficient remains 0.15; no wear after 1,000 rotation tests |
(2) Montage & Functional Debugging
Proper assembly ensures components work together seamlessly, while functional tests validate the prototype’s usability.
Assembly Steps:
- Pre-Assembly Check: Verify all parts meet dimensional requirements (z.B., juice cup fits shell with 0.5mm clearance).
- Component Fixing:
- Bond PC juice cup to ABS shell with food-grade adhesive (ensure no leakage).
- Screw aluminum motor brackets to the base (Drehmoment 5 N·m, avoid thread damage).
- Install POM gears and 3D-printed resin simulation blades (replace real metal blades for safety).
- Sealing Test: Pour 200mL water into the juice cup—check for leakage at connections (no water seepage within 10 Minuten).
Functional Debugging:
- Button Operation: Test switch/pulse buttons 100 times—stroke 2mm ±0.2mm, feedback force 5–8N (comfortable for users).
- Blade Rotation: Simulate juicing with a motor (500 rpm)—ensure blade rotates smoothly, no friction with cup wall.
- Juice Flow: Pour water through the feeding port—check flow rate (≥50mL/min) and no residue in the cup.
4. Qualitätskontrolle & Prozessoptimierung
Strict quality control ensures the prototype meets design standards, while optimization reduces costs for future iterations.
(1) Key Quality Control Standards
| Control Item | Acceptance Criteria | Inspection Method |
| Maßgenauigkeit | – Juice cup: ±0,1 mm- Shell: ±0,2 mm- Gear cavity: ±0,05 mm | CMM (critical components); digital caliper (general parts) |
| Oberflächenqualität | – PC: Ra ≤0.4μm, transparency ≥85%- ABS: Ra ≤0.8μm, no tool marks | Surface roughness tester; spectrophotometer; Sichtprüfung (500lux light) |
| Functional Performance | – No leakage (10-minute water test)- Blade rotation: 500 rpm ±50 rpm | Water leakage test; tachometer (blade speed) |
(2) Process Optimization Tips
- Material Saving: Design hollow structures for ABS parts (z.B., base with 3mm thick walls) to reduce blank size—saves 20–30% material cost.
- Machining Efficiency: Combine roughing and semi-finishing for simple parts (z.B., decorative strips) to cut tool change time by 15%.
- Post-Processing Simplification: For hidden parts (z.B., motor brackets), skip anodizing—use natural aluminum finish to save 10–15% of treatment cost.
Yigu Technology’s Perspective on CNC Machining Juicer Prototype Models
Bei Yigu Technology, we believe functional precision and user experience are the core of juicer prototype machining. Many clients overcomplicate processes—for example, using 5-axis machines for flat ABS shells when 3-axis works, or over-polishing hidden POM parts. Our team optimizes for both quality and cost: We use PC with diamond polishing for juice cups (ensuring transparency ≥85%) and 3-axis machines for most components to cut 20% of machining time. We also simplify blade simulation (3D-printed resin instead of metal) for safety and cost. For batch prototypes, we use multi-cavity fixtures to machine 2–3 juice cups at once, reducing production time by 30%. Our goal is to deliver prototypes that validate design and user needs at the lowest cost.
FAQ
- Why is PC plastic preferred for juicer juice cups instead of acrylic?
PC plastic has higher impact resistance (10x stärker als Glas) and better temperature stability (heat-resistant up to 135°C) than acrylic—critical for juice cups that may encounter accidental drops or warm liquids. Acrylic is prone to cracking and yellowing under heat, making it unsuitable for long-term juicer use.
- How to prevent POM parts from melting during CNC machining?
POM melts at 160°C, so we control temperature by: 1) Using low cutting speeds (8,000–10,000 rpm) to reduce friction heat; 2) Blowing compressed air continuously to cool the workpiece; 3) Avoiding deep cuts (layer depth ≤2mm) to minimize heat accumulation. These steps keep POM temperature below 120°C during machining.
- What is the total time required to machine a single juicer prototype?
Total time is ~4–6 days: 1 day for 3D modeling/material prep, 1–2 days for CNC machining (roughing + Abschluss), 1 day for post-processing (polishing/painting), and 1–2 days for assembly/debugging. Batch production (10+ Prototypen) can be shortened to 3–4 days with parallel processing.
