What Is the Professional CNC Machining Pet Feeder Prototype Process?

CNC-Schweizung

1. Vor-CNC-Bearbeitung: Design and Preparation for Pet Feeder Prototypes

Before initiating CNC -Bearbeitung for the pet feeder prototype, a systematic design and preparation stage is critical to meet functional, Sicherheit, and pet-friendly requirements. Diese Phase folgt einer linearen Sequenz, mit Schlüsseldetails in der folgenden Tabelle organisiert.

DesignschrittSchlüsselanforderungenEmpfohlene Materialien
ProduktbedarfsanalyseKernfunktionen: Determine feeder type (automatic/manual), target pet (cat/dog), food bin capacity (1-3L); Additional features: timed dosing (0.5-2g per serving), moisture protection (sealed food bin), water storage compartment (optional); Sicherheit: No sharp edges (pet mouth protection), ungiftige Materialien; Reserve space for gear transmission system, Motor (DC 6V), Bedienfeld, and power port.
Strukturelles DesignSplit components: Food bin (upper/lower), Base, gear box, fixed bracket, control panel shell; Optimize food flow path (no dead corners to avoid clogging); Design sealing grooves (width 2-3mm, depth 1-1.5mm) for moisture protection; Add anti-slip silicone pads (diameter 10mm) on base corners.
3D Modellierung & ZeichnungVerwenden Sie die CAD -Software (Solidworks, Und NX) to create 3D models (tolerance ±0.1mm for plastic, ±0.05mm for metal); Mark key dimensions: Food bin inner diameter (matches capacity), gear module (0.5-1), motor mounting hole (Φ25mm); Export 2D drawings (DXF) with surface roughness requirements (Ra3.2 for food-contact parts).
MaterialauswahlPrioritize non-toxicity, Resistenz tragen, und Verwirrbarkeit, matching mass production standards.Food Bin/Base: ABS -Plastik (ungiftig, wirkungsbeständig, Dicke 2-3 mm) oder Acryl (transparent, easy to check food level); Gear Box/Fixed Bracket: ABS/PC -Legierung (hohe Starrheit, Tragenresistent); Getriebe: POM plastic (geringe Reibung, quiet transmission) or aluminum alloy (Hochleistungs); Control Panel Shell: PC -Kunststoff (Isolierung, kratzfest).
Materielle VorbehandlungRohstoffe in Lücken schneiden (Lassen Sie die Bearbeitungszulage von 0,5-1 mm): ABS/Acryl über Laserschnitte, aluminum alloy via bandsaw; Anneal Aluminiumlegierung (300-350° C für 1-2 Std.) Stress reduzieren; Trockenes ABS/Acryl (80-100° C für 2-3 Std.) Feuchtigkeit entfernen (verhindert Bearbeitungsblasen); Clean blanks with alcohol to remove oil.

2. CNC Machining Preparation for Pet Feeder Prototypes

Eine angemessene Vorbereitung vor der eigentlichen Bearbeitung gewährleistet Effizienz und Präzision CNC -Bearbeitung for pet feeder prototypes. In diesem Abschnitt geht es um die Werkzeugauswahl, Parametereinstellung, und Vorrichtungsbau.

2.1 Material- und Werkzeugauswahl

Die Wahl der Materialien und Werkzeuge wirkt sich direkt auf die Qualität und Effizienz der Bearbeitung aus. Die folgende Tabelle enthält detaillierte Empfehlungen:

KategorieSpezifische OptionenAnwendungsszenarien
GehäusematerialienABS-Platte (2-3mm), Acrylplatte (2-3mm), ABS/PC alloy plate (1.5-2mm)ABS for food bins/bases; acrylic for transparent food bins; ABS/PC for gear boxes.
Transmission MaterialsPOM rod (diameter 8-12mm), Aluminiumlegierung 6061 Stange (diameter 10-15mm)POM for low-noise gears; aluminum alloy for heavy-duty gears/shafts.
Grobe BearbeitungswerkzeugeΦ8-10mm flat-bottom cutter (ABS/acrylic), Φ6-8 mm Flatbodenschneider (Aluminiumlegierung)Quick material removal for large components (food bin, Base).
Finishing -WerkzeugeΦ3-5mm ball-head cutter (gekrümmte Kanten), Φ1-2mm root-clearing cutter (Zahnradzähne), Φ2-3mm drill bit (Montagelöcher)Gewährleisten Sie glatte Oberflächen (Ra3.2) und genaue Details (Zahnradzähne, motor holes).
Spezielle WerkzeugeM3-M4 taps (Fadenlöcher), gear milling cutter (module 0.5-1), Laserstecher (control panel symbols)Process assembly threads; machine gear teeth; gravieren “On/Off” oder “Dose” Symbole.

2.2 Parameter Setting and Fixture Design

Scientific parameter setting and stable fixtures prevent machining errors.

LinkSchlüsselvorgängeZweck & Wirkung
SchneidenparameterABS/Acrylic: Hohe Geschwindigkeit (10,000-20,000 Drehzahl), feed rate 100-300mm/min, cutting depth 0.2-0.5mm (Vermeidet ein Knacken);- Aluminiumlegierung: Medium speed (5,000-10,000 Drehzahl), feed rate 50-200mm/min, cutting depth 0.1-0.2mm (Verhindert Werkzeugkleidung);- Pom: Hohe Geschwindigkeit (12,000-15,000 Drehzahl), feed rate 200-400mm/min, cutting depth 0.3-0.6mm.Ensure machining efficiency; avoid material damage or poor surface finish.
VorrichtungsdesignABS/Acrylic: Use vacuum adsorption platform (gleichmäßiger Druck, Keine Kratzer); for curved food bins, use custom jigs with soft pads.- Aluminum Alloy/POM: Use precision vise with rubber jaws (prevent surface damage); for small gears, use multi-point clamping fixtures.- Long components (Z.B., fixed brackets): Use two-end support fixtures to avoid vibration.Sorgen Sie für die Stabilität des Werkstücks; sorgen für Maßhaltigkeit (±0.05mm for key parts).

3. Core CNC Machining Process for Pet Feeder Prototypes

Das Formale CNC-Bearbeitungsprozess wandelt Designmodelle in physische Teile um, with strict control over each step to ensure functionality and safety.

3.1 Hauptkomponentenbearbeitung

Unterschiedliche Bauteile erfordern gezielte Bearbeitungsschritte, wie unten beschrieben:

KomponenteSchruppschritteAbschlussschritte
Food Bin (ABS/Acrylic)1. Außenkontur fräsen (Entspricht der Designgröße, 0,5 mm Spielraum einhalten);2. Mill inner cavity (depth 150-250mm for 1-3L capacity);3. Drill food outlet (Φ10-15mm) and motor mounting hole (Φ25mm).1. Smooth inner cavity walls (Ra3.2, prevent food clogging);2. Chamfer all edges (R1mm, pet-safe);3. Machine sealing grooves (width 2mm, depth 1mm) at bin bottom.
Gear Box (ABS/PC Alloy)1. Mill box shape (0,5 mm Spielraum einhalten);2. Mill gear cavity (size matches gear module);3. Cut motor shaft hole (Φ8-10mm).1. Glatte Hohlraumwände (Ra3.2, reduce gear friction);2. Tap M3 threaded holes (for cover fixation);3. Deburr shaft hole (prevent gear jamming).
Gear (POM/Aluminum Alloy)1. Turn rod into cylindrical blank (diameter matches gear outer diameter, 0,3 mm Spielraum einhalten);2. Rough mill gear teeth (module 0.5-1, leave 0.1mm allowance).1. Finish mill gear teeth (tooth profile accuracy ±0.02mm);2. Polish gear surface (Ra0.8, quiet transmission);3. Machine keyway (width 2mm) for shaft connection.
Control Panel Shell (PC)1. Außenform fräsen (0,5 mm Spielraum einhalten);2. Mill button holes (Φ5mm) and display cutout (20×10mm);3. Drill power port cutout (DC 6V size).1. Smooth inner walls (Ra3.2, easy to install PCB);2. Chamfer button holes (C0,5mm);3. Laser engrave function symbols (Z.B., “Timer”).

3.2 Wichtige Detailbearbeitung

Critical details directly affect the prototype’s functionality and pet safety:

  • Gear Tooth Machining: Use gear milling cutter with spiral interpolation to ensure tooth pitch accuracy (± 0,02 mm); Test meshing with mating gear (no jamming, transmission noise ≤40dB).
  • Food Outlet Machining: Taper the outlet (15° Winkel) to avoid food accumulation; Ensure inner wall smoothness (Ra3.2) to prevent clogging with dry/wet food.
  • Sealing Groove Machining: Control groove width (2mm) and depth (1mm) with tolerance ±0.05mm; Ensure groove uniformity (no depth deviation >0.03mm) to fit silicone gaskets (moisture protection, IPX4 standard).
  • Edge Chamfering: All pet-contact parts (food bin edges, base corners) must be chamfered (R1mm) or rounded (R2mm) to avoid scratching pets’ mouths or paws.

3.3 Prüfung der Bearbeitungsqualität

Conduct in-process checks to ensure quality:

  • Dimensionale Inspektion: Use digital calipers (outer dimensions, tolerance ±0.1mm for plastic, ±0.05mm for metal) and coordinate measuring machine (CMM) (Zahnradzähne, sealing grooves, Toleranz ±0,03 mm).
  • Surface Quality Check: Use surface roughness meter (Ra3.2 for food-contact parts, Ra6.3 for non-contact parts); Überprüfen Sie auf Kratzer (no visible scratches >0.3mm on acrylic) and burrs (keine scharfen Kanten).
  • Safety Test: Verify material non-toxicity (pass RoHS, FDA food-grade certifications); Check gear transmission (no sharp edges on teeth).

4. Post-Processing and Assembly of Pet Feeder Prototypes

Post-processing enhances safety and aesthetics, while precise assembly ensures functionality.

4.1 Oberflächenbehandlung

Different materials require targeted treatment to meet safety and design goals:

MaterialOberflächenbehandlungsmethodeZweck & Wirkung
ABS/Acrylic (Food Bin)Polieren + Anti-Scratch CoatingPolishing improves smoothness (prevents food sticking); anti-scratch coating (5-10μm) resists daily wear (no scratches after 500 steel wool tests).
POM/Aluminum Alloy (Getriebe)Ölbeschichtung (Food-Grade Lubricant)Reduziert die Reibung (verlängert die Lebensdauer um 30%) and transmission noise (≤40dB).
PC (Control Panel Shell)Silk Screen + UV CuringSilk screen prints function symbols (clear visibility); UV curing enhances wear resistance (no fading after 10,000 Berührungen).
Aluminiumlegierung (Fixed Bracket)Eloxierung (Black/Silver)Verbessert die Korrosionsresistenz (salt spray test ≥48 hours); enhances texture.

4.2 Montage und Funktionsprüfung

Scientific assembly and strict testing ensure the prototype meets pet safety and functional requirements.

4.2.1 Montageprozess

Follow this sequence to avoid errors:

  1. Kontrolle vor der Montage: Inspect all parts for defects (Keine Kratzer, dimensional deviation ≤0.1mm); Prepare auxiliary materials (silicone gaskets, non-toxic glue, lithium-based grease, Schrauben).
  2. Component Installation:
  • Gear Transmission Assembly: Apply lubricant to gears; Install gears into gear box (ensure meshing clearance 0.05-0.1mm); Connect motor to gear shaft (use keyway for fixation).
  • Food Bin Assembly: Place silicone gasket in sealing groove; Fix upper/lower food bin with M3 screws (torque 0.8-1N·m); Install food outlet cover (snap-fit).
  • Base & Control Panel Assembly: Mount gear box and fixed bracket on base (M4 screws, torque 1.2-1.5N·m); Install PCB in control panel shell; Connect motor, Anzeige, and power port to PCB.
  1. Final Check: Ensure no loose parts; Verify gear rotation (glatt, no jamming); Check food bin sealing (no air leakage).

4.2.2 Funktionstests

Conduct comprehensive tests to validate performance:

  • Safety Tests:
  • Non-Toxicity Test: Soak food-contact parts in water for 48 Std. (heavy metal content ≤0.01mg/L);
  • Impact Test: Drop base from 0.5m (foam pad, no structural damage, no sharp edges exposed);
  • Moisture Protection Test: Place feeder in 90% humidity environment for 24 Std. (no moisture in food bin).
  • Funktionstests:
  • Timed Dosing Test: Set 0.5-2g servings (accuracy ±0.1g); Run 100 Zyklen (no clogging);
  • Gear Transmission Test: Run motor for 2 Std. (no overheating, transmission noise ≤40dB);
  • Power Test: Use DC 6V battery (continuous use time ≥72 hours for automatic mode).
  • Pet Experience Tests:
  • Food Flow Test: Use dry (3-5mm pellets) and wet food (paste-like) (no clogging);
  • Accessibility Test: Simulate pet eating (no difficulty reaching food outlet, height ≤40mm).

5. Application Scenarios of CNC Machined Pet Feeder Prototypes

CNC machined pet feeder prototypes serve multiple purposes in product development and market promotion:

AnwendungsszenarioSpecific UsesAdvantage of CNC Machining
Product Design VerificationTest dosing accuracy, gear transmission, and moisture protection; Optimize structure (Z.B., adjust food outlet size for different food types).Hohe Präzision (± 0,05 mm) ensures accurate simulation of mass production models; supports rapid iteration (modify 3D models, re-machine in 2-3 Tage).
Market ResearchDisplay at pet product exhibitions; Collect user feedback on appearance (transparent/non-transparent) und Funktionalität (timed dosing ease); Adjust mass production plans.Prototype appearance/functionality match final products; attracts pet owners (pet-safe, high-quality design).
Small-Batch CustomizationPet shops (custom logos), high-end pet hotels (large-capacity bins); Produce ≤50 units without opening molds.Flexibel (adapt to custom sizes/colors quickly); kostengünstig (no mold fees, lower than injection molding for small batches).
Educational TrainingDisassemble to demonstrate gear transmission principles, CNC -Bearbeitungsprozesse; Suitable for industrial design/pet product development teaching.Clear internal structure (easy to observe components); sicher (meets pet safety standards).

6. Key Precautions for CNC Machining Pet Feeder Prototypes

Qualität sicherstellen, Sicherheit, und Effizienz, observe these precautions:

  • Safety Priority: All materials must be non-toxic (Lebensmittelqualität); Avoid sharp edges (chamfer pet-contact parts to R1mm); Gears must have smooth teeth (no burrs to prevent pet injury).
  • Präzisionskontrolle: Gear tooth tolerance ±0.02mm (ensures smooth transmission); Sealing groove tolerance ±0.05mm (moisture protection); Food outlet size accuracy ±0.1mm (prevents clogging).
  • Kostenoptimierung: CNC machining is ideal for ≤100 units; Für die Massenproduktion (>1000 units), switch to injection molding (ABS/PC parts) to reduce cost by 50-60%. Simplify complex curves (Z.B., replace irregular food bin shapes with cylinders) to shorten toolpaths.
  • Umweltschutz: Use non-toxic, biodegradable coolants; Recycle metal/plastic scraps (Z.B., Aluminiumlegierung, ABS).

Standpunkt der Yigu -Technologie

Bei Yigu Technology, Wir glauben CNC machining is the core to developing safe and functional pet feeder prototypes. It enables precise control of critical structures—from gear teeth (±0.02mm accuracy) to pet-safe chamfers (R1mm)—and supports rapid iteration, which is vital for balancing functionality (timed dosing, quiet transmission) and pet safety (non-toxicity, keine scharfen Kanten). When producing these prototypes, we focus on two core aspects: material-function matching (POM for low-noise gears, food-grade ABS for bins) und Prozessoptimierung (spiral interpolation for gear teeth, vacuum adsorption for acrylic). By integrating strict quality control from design to testing, we help clients shorten development cycles by 20-25% and mitigate mass production risks. Blick nach vorn, we will apply AI-driven parameter optimization to CNC machining, further improving efficiency while maintaining ±0.03mm precision for more reliable pet feeder prototypes.

FAQ

  1. What materials are best for CNC machined pet feeder prototype components, und warum?

The best materials depend on components: ABS/PC alloy for gear boxes (hohe Starrheit, Tragenresistent); POM plastic for gears (geringe Reibung, quiet); food-grade ABS/acrylic for food bins (ungiftig, leicht zu reinigen); aluminum alloy for fixed brackets (korrosionsbeständig). These materials balance machinability, Funktionalität, and pet safety.

Index
Scrollen Sie nach oben