Was ist ein CNC-Bearbeitungsmodellierungsprozess für einen Reiskocher-Prototyp?? Eine Schritt-für-Schritt-Anleitung

4 axis cnc machining

Developing a rice cooker prototype requires a precise CNC machining modeling process to validate design feasibility, test structural stability, and ensure alignment with user needs—critical steps before mass production. Unlike other kitchen appliances, rice cookers have unique structural requirements (Z.B., heat-resistant liners, sealed lids) that shape every stage of the modeling process. In diesem Leitfaden wird der gesamte Arbeitsablauf erläutert, from 3D modeling to post-processing, mit Schlüsselparametern, Materialauswahl, und praktische Tipps für den erfolgreichen Prototypenbau.

1. Vorläufige Vorbereitung: Lay the Foundation for Modeling

Der Erfolg der CNC-Bearbeitung beginnt mit einer gründlichen Vorbereitung, including 3D model design, Materialauswahl, and tool/fixture readiness. This stage ensures the subsequent machining process is efficient and accurate.

(1) 3D Modellierung: The Core of Prototype Design

Use professional CAD software to create a detailed 3D model that covers all key structures of the rice cooker. The model must balance design aesthetics, functional needs, und Machbarkeit der Bearbeitung.

StrukturkategorieWichtige DesigndetailsPräzisionsanforderungenZweck
External StructureHülse (cylindrical or square shape), Bedienfeld (Tastenpositionen, display window), handhaben (ergonomische Kurve)Shell diameter error ±0.2mm; button hole position tolerance ±0.1mmEnsure assembly accuracy; meet user operation habits
Interne StrukturLiner (deep cavity, 3–5 mm Dicke), heating plate mounting groove, sensor fixing holesLiner roundness error ≤0.1mm; mounting groove depth tolerance ±0.05mmFit internal components (Z.B., Heizplatte, sensor); ensure heat conduction efficiency
ProzessmerkmaleDraft slope (3°~5° on shell/lid), rounding corners (R1.5mm on handle edges), parting linesDraft slope avoids machining interference; rounding prevents user scratchesSimplify CNC machining; improve user safety

Tipps zur Modelloptimierung:

  • Layered Processing: Komplexe Strukturen aufteilen (Z.B., lid with inner sealing ring groove) into separate components (outer lid + inner sealing layer) to reduce tool interference during machining.
  • Detail Marking: Clearly label key dimensions (Z.B., liner thickness, button hole diameter) in the model to avoid machining deviations.
  • Interferenzprüfung: Verwenden Sie Software (Z.B., Solidworks) to simulate part assembly and ensure no overlapping or collision between components (Z.B., lid and shell when closed).

(2) Materialauswahl: Passen Sie die Leistung an die Komponentenrollen an

Different parts of the rice cooker require materials with specific properties (Z.B., Wärmewiderstand, Steifheit). Below is a detailed comparison of suitable materials:

MaterialtypApplicable PartsSchlüsseleigenschaftenVorteile der Bearbeitbarkeit
ABS -PlastikHülse, control panel housing, button basesLeicht (density 1.05g/cm³), leicht zu färben, niedrige KostenGeringer Werkzeugverschleiß; can be machined at high speed (10,000–15,000 rpm)
Aluminiumlegierung (6061)Liner, heating plate brackets, handle coresHohe Stärke (tensile strength 276MPa), Gute Wärmeleitfähigkeit, korrosionsbeständigSmooth surface after machining; suitable for deep cavity processing (Liner)
Acryl (PMMA)Display window, transparent lid partsHigh light transmittance (≥92%), klares Aussehen, gute AufprallfestigkeitPräzises Schneiden möglich; polished surface mimics glass
Nylon (Pa)Internal structural supports (Z.B., Sensorklammern)Wärmewiderstand (continuous use temp 80–120°C), TragenresistentNiedriger Reibungskoeffizient; no deformation during machining

Blank Preparation:

  • Cut blanks according to the maximum size of each part: Zum Beispiel, an ABS shell with a diameter of 200mm and height of 150mm requires a 220mm×220mm×160mm ABS block to reserve machining allowance (5–10mm on each side).
  • For aluminum alloy liners, use extruded aluminum blocks to ensure uniform material density and reduce machining defects.

(3) Werkzeug & Fixture Preparation: Ensure Machining Stability

The right tools and fixtures prevent part shifting and ensure machining accuracy.

WerkzeugtypAnwendungsszenarienTool Size Recommendation
Flat-Bottom End MillRough machining of shell contours, liner outer wallsΦ8 – φ12mm (ABS); Φ6–Φ10 mm (Aluminiumlegierung)
Ball-Head End MillFinishing of curved surfaces (handhaben, lid edges), deep cavity inner wallsΦ3–Φ6mm (ABS/acrylic); Φ2–Φ5mm (Aluminiumlegierung)
Twist DrillDrilling of button holes, sensor mounting holesΦ2 – F8MM (match hole size requirements)
KlopfenProcessing of threaded holes (Z.B., handle fixing holes)M3–M6 (according to assembly needs)

Fixture Selection:

  • Vacuum Suction Cups: Für flache Teile (Z.B., acrylic display windows, aluminum alloy plates) to avoid clamping marks.
  • Precision Vises: For irregular parts (Z.B., ABS shell blanks) with adjustable jaws to ensure firm fixing.
  • Custom Jigs: For deep cavity parts (Z.B., aluminum alloy liners) to support the cavity wall and prevent deformation during machining.

2. CNC -Bearbeitungsausführung: From Blank to Prototype Shape

This stage converts blanks into prototype parts through rough machining, fertig, and special structure processing—each step requires strict parameter control.

(1) Program Writing & Debuggen: Avoid Machining Errors

  1. G-Code-Generierung: Importieren Sie das 3D -Modell in CAM -Software (Z.B., Mastercam, PowerMill). Set machining parameters based on material and tool type:
  • For ABS shell rough machining: Schnittgeschwindigkeit 12,000 Drehzahl, Futterrate 1,500 mm/min, cutting depth 1–2mm.
  • For aluminum alloy liner finishing: Schnittgeschwindigkeit 18,000 Drehzahl, Futterrate 800 mm/min, cutting depth 0.1–0.3mm.
  1. Empty Run Test: Conduct an empty run on the CNC machine to check tool path 合理性 (Z.B., no collision with fixtures, sufficient space for tool movement). Adjust the program if issues are found.

(2) Grobe Bearbeitung: Remove Excess Material Efficiently

The goal of rough machining is to quickly shape the blank into a rough outline close to the final part, leaving a small finishing allowance.

MaterialMachining FocusSchlüsselvorgänge
ABS -PlastikShell contour, Steckplatz für das BedienfeldUse Φ10mm flat-bottom mill to cut the outer contour first; then machine the control panel slot (depth 5mm)
AluminiumlegierungLiner deep cavity, bracket outlineUse Φ8mm flat-bottom mill for layered cutting of the liner cavity (depth 100mm, 2mm pro Schicht); leave 0.3mm allowance
AcrylDisplay window outer shapeUse Φ6mm flat-bottom mill to cut the rectangular outline (size 80mm×50mm); leave 0.2mm allowance

(3) Fertig: Erreichen Sie Präzision & Glatte Oberfläche

Finishing focuses on improving dimensional accuracy and surface quality, ensuring the part meets design requirements.

Schlüsselvorgänge & Parameter:

  • Curved Surface Finishing: For handle curved surfaces, use a Φ4mm ball-head mill with a step distance of 0.1mm to eliminate tool marks; achieve surface roughness Ra ≤1.6μm.
  • Deep Cavity Finishing: For aluminum alloy liner inner walls, use an extended Φ3mm ball-head mill (length 120mm) to reach the cavity bottom; adjust spindle speed to 20,000 rpm to avoid vibration.
  • Hole Machining: Drill button holes (Φ5mm) with a twist drill, then use a reamer (Φ5mm) to improve hole roundness (Fehler ≤0,02 mm).

Handhabung spezieller Strukturen:

  • Dünnwandige Teile (Z.B., ABS shell side walls, 2mm Dicke): Use high-speed cutting (15,000 Drehzahl) and reduce cutting depth to 0.5mm; add temporary support ribs during machining to prevent deformation.
  • Threaded Holes: Drill bottom holes first (Z.B., Φ3.3mm for M4 threads), then tap with a high-speed steel tap (Geschwindigkeit 500 Drehzahl) to avoid thread stripping.

(4) Prüfung der Bearbeitungsqualität

Nach Abschluss, inspect each part to catch defects early:

  1. Dimensionsprüfung: Verwenden Sie einen digitalen Bremssattel oder eine Koordinatenmessmaschine (CMM) to verify key dimensions—e.g., liner diameter (200mm ±0.1mm), button hole spacing (30mm ±0,05 mm).
  2. Surface Check: Visually inspect for tool marks, Burrs, or melting (common in ABS); use a roughness tester to confirm Ra value (≤1.6μm for appearance parts).

3. Nachbearbeitung: Verbessern Sie das Erscheinungsbild & Funktionalität

Post-processing improves the prototype’s aesthetics and performance, making it closer to the mass-produced product.

(1) Oberflächenbehandlung: An Material abschneiden & Part Role

MaterialTeiltypSchritte zur OberflächenbehandlungErwartetes Ergebnis
ABS -PlastikHülse, Bedienfeld1. Sand with 400#→800#→1000# sandpaper (Werkzeugspuren entfernen); 2. Spray primer (30μm dick); 3. Spray matte paint (color matching to design, 50μm dick); 4. Oven cure at 60°C for 2 Std.Lackhaftung ≥4B (Kein Schälen); uniform color, Keine Blasen
AluminiumlegierungLiner, handhaben1. Degrease with isopropyl alcohol; 2. Anodisieren (form 8–10μm thick silver-gray oxide film); 3. Sandstrahlen (for liner inner wall, improve heat absorption)Korrosionsbeständig; liner inner wall roughness Ra 3.2μm (good for heat conduction)
AcrylDisplay window1. Polish with 600#→1200#→2000# abrasive paste; 2. Clean with lens cleanerLichtdurchlässigkeit ≥90 %; no visible scratches

(2) Montage & Funktionales Debuggen

  1. Montage: Assemble processed parts (Hülse, Liner, Deckel, Knöpfe, display window) using screws or snaps—ensure no interference between components (Z.B., lid opens/closes smoothly, buttons press without jamming).
  2. Funktionstest:
  • Strukturstabilität: Apply a 3kg load to the lid (simulate accidental pressure) für 10 Minuten; check for deformation (no more than 0.2mm).
  • Fit Check: Verify the liner fits tightly in the shell (gap ≤0.5mm) to ensure heat is not lost.
  • Button Function: Test button stroke (2mm ±0.2mm) and feedback force (5–7N) to ensure comfortable operation.

4. Qualitätskontrolle & Optimierung: Stellen Sie die Zuverlässigkeit von Prototypen sicher

Strict quality control ensures the prototype meets design standards, while optimization reduces costs and improves efficiency.

(1) Key Quality Control Points

Control ItemStandardInspection Method
DimensionsgenauigkeitKey dimensions error ≤±0.1mmCMM or digital caliper
OberflächenqualitätNo tool marks, Burrs, or paint defectsVisuelle Inspektion + roughness tester
Assembly MatchingNo interference; uniform gaps (≤0.5mm)Feeler gauge + assembly simulation
Material PerformanceABS -Teile: Wärmewiderstand (no deformation at 80°C for 1 Stunde); aluminum alloy parts: no rust after 48-hour salt spray testHigh-temperature oven + salt spray test

(2) Optimization Strategies

  1. Material Saving: Für große Teile (Z.B., ABS shell), design hollow structures (with 3mm thick walls) to reduce blank size and material waste by 20–30%.
  2. Prozessoptimierung: Combine rough and semi-finishing for simple parts (Z.B., button bases) to reduce tool change time by 15–20%.
  3. Batch Machining: Für 10+ Prototypen, use multi-cavity fixtures to machine multiple parts at once—improve efficiency by 40–50%.

Yigu Technology’s Perspective on Rice Cooker Prototype CNC Machining Modeling

Bei Yigu Technology, Wir glauben design-machining integration is the core of efficient rice cooker prototype modeling. Many clients face issues like liner deformation or poor shell surface quality due to disconnected design and machining. Our team optimizes models for manufacturability: Zum Beispiel, adding 0.5mm machining allowance to liner walls and designing draft slopes for shell parts to avoid tool jamming. We also select materials strategically—using ABS for shells (kostengünstig, einfach zu beenden) and aluminum alloy 6061 for liners (excellent heat conduction, dauerhaft). Für die Nachbearbeitung, we use automated sanding equipment to ensure uniform surface quality, reducing manual errors by 30%. Our goal is to deliver prototypes that accurately reflect mass-production effects, helping clients shorten product development cycles by 20–25%.

FAQ

  1. Why is aluminum alloy 6061 chosen for rice cooker liners instead of other materials?

Aluminiumlegierung 6061 has a balance of high strength, Gute Wärmeleitfähigkeit (167W/m · k), and corrosion resistance—critical for liners that need to withstand high temperatures (bis zu 100 ° C.) and repeated use. It also machines smoothly, allowing for precise deep cavity processing to fit heating plates, which other materials like stainless steel (schwerer, lower heat conductivity) oder Plastik (poor heat resistance) can’t match.

  1. How to prevent deformation of thin-walled ABS shell parts during CNC machining?

We use three key methods: 1) Hochgeschwindigkeitsschnitt (15,000–18,000 rpm) to reduce cutting force and heat generation; 2) Reduce cutting depth to 0.5mm per pass and increase feed rate to 1,200 mm/min to minimize material stress; 3) Add temporary support ribs (2mm dick) in the model, which are machined off after the main structure is stable.

  1. What is the total time required for the CNC machining modeling process of a single rice cooker prototype?

Total time is ~3–5 days: 1 day for 3D modeling and material preparation, 1–2 days for CNC machining (rauh + fertig), 0.5–1 Tag für die Nachbearbeitung (painting/anodizing), and 0.5–1 day for assembly and functional testing. Serienfertigung (5+ Prototypen) can be shortened to 2–3 days by parallel processing (Z.B., machining multiple parts at once).

Index
Scrollen Sie nach oben