Was ist der professionelle CNC-Bearbeitungsprozess für elektrische Ventilatorprototypen??

Polyester-PBT-Spritzguss

Der CNC-Bearbeitungsprozess für elektrische Lüfterprototypen ist ein systematischer Arbeitsablauf, der Designkonzepte in physische Prototypen umwandelt, Validierung der Authentizität des Aussehens, strukturelle Stabilität, Luftstromeffizienz, und Kernfunktionslogik (z.B., kopfschüttelnde Glätte, Lärmschutz). In diesem Artikel wird der Prozess mithilfe datengesteuerter Tabellen Schritt für Schritt aufgeschlüsselt – vom vorläufigen Entwurf bis zum endgültigen Debugging, praktische Richtlinien, und Tipps zur Fehlerbehebung […]

Der CNC machining electric fan prototype process is a systematic workflow that transforms design concepts into physical prototypes, Validierung der Authentizität des Aussehens, strukturelle Stabilität, Luftstromeffizienz, und Kernfunktionslogik (z.B., kopfschüttelnde Glätte, Lärmschutz). In diesem Artikel wird der Prozess mithilfe datengesteuerter Tabellen Schritt für Schritt aufgeschlüsselt – vom vorläufigen Entwurf bis zum endgültigen Debugging, praktische Richtlinien, and troubleshooting tips to help you navigate key challenges and ensure prototype success.

1. Vorläufige Vorbereitung: Define Requirements & Lay the Foundation

Preliminary preparation sets the direction for the entire prototype development. It focuses on two core tasks: requirements analysis & conceptual design Und 3D-Modellierung & structural detailing, both tailored to the unique needs of electric fans (z.B., silent operation for bedrooms, stability for floor fans).

1.1 Requirements Analysis & Conceptual Design

Before starting machining, clarify functional and appearance requirements to avoid misaligned development goals.

  • Functional Requirements Clarification:
Fan TypeCore Functional FocusKey Specs Example
Floor FanHead-shaking range, Stabilität, high airflowHead-shaking angle: 60°–90°; Base weight ≥2kg
Table FanSilent operation, compact size, low powerNoise ≤40dB; Size ≤300×300×400mm; Power ≤30W
Ceiling FanLoad-bearing capacity, uniform airflowLoad capacity ≥5kg; Airflow coverage ≥15m²
  • Appearance Concept Design:
  • Create preliminary sketches or 3D drafts using tools like SketchUp oder Nashorn, considering:
  • Aesthetic Coordination: Rounded edges (radius 3–5mm) for household fans to fit home decor; geometric shapes for industrial fans.
  • Human-Computer Interaction: Button/knob layout (z.B., 3 wind-speed buttons on the fan head for easy reach); indicator light positions (visible but not glaring).
  • Environmental Adaptation: Dust-proof grilles for industrial fans; anti-slip base pads for table fans.

Why is this important? Skipping requirement clarification can lead to rework—for example, a bedroom fan prototype without silent design may need 25% more time to optimize fan blade curvature and motor mounting.

1.2 3D-Modellierung & Structural Detailing

Use professional CAD software to translate concepts into precise models, ensuring processability for CNC machining.

  • Software Selection: Prioritize SolidWorks, UG NX, oder Pro/E—they support parametric design, allowing easy adjustment of dimensions (z.B., fan blade length, base diameter) and compatibility with CAM software.
  • Core Structural Design:
  1. Component Breakdown: Split the fan into parts like housing, fan blades, motor bracket, base, Und control panel for separate machining.
  2. Key Structure Optimization:
  • Housing: Determine material thickness (1–3mm for plastic, 2–4mm for metal) and assembly structures (snaps, M2–M3 screw holes with ±0.1mm tolerance).
  • Fan Blades: Design curved surfaces and angles (15°–25° attack angle) to balance airflow and noise; ensure blade weight difference ≤0.5g for anti-jitter.
  • Base: Add weighted blocks or counterweight structures (z.B., 1kg metal plate in plastic bases) to improve stability; integrate rubber anti-slip pads (thickness 2–3mm).
  • Head-Shaking Mechanism: For floor/table fans, design gear or connecting rod structures (gear module: 0.5–1mm) to ensure smooth left-right swinging.
  1. Detail Features: Add brand logos (embossed height 0.8–1mm), heat dissipation holes (diameter 2–3mm, grid pattern), and button icons (silk-screen ready).

2. Materialauswahl & Process Planning: Match Materials to Functions

Choosing the right materials and defining machining strategies are critical for prototype performance. This phase follows amaterial selection → parameter setting → sequence planning” Arbeitsablauf.

2.1 Materialauswahl: Balance Performance & Kosten

Different components require materials with specific properties (z.B., lightweight for fan blades, durability for bases). The table below compares suitable options:

ComponentRecommended MaterialSchlüsseleigenschaftenProcessing AdvantagesKostenspanne (pro kg)
HousingABS-Kunststoff / AluminiumlegierungPlastik: Leicht, niedrige Kosten; Metall: DauerhaftPlastik: Easy cutting; Metall: Good for anodization\(3–)6 (ABS); \(6–)10 (Aluminium)
Fan BladesABS-Kunststoff / AluminiumlegierungPlastik: Low noise; Metall: Hohe FestigkeitPlastik: No burrs; Metall: Suitable for curved machining\(3–)6 (ABS); \(6–)10 (Aluminium)
BaseABS-Kunststoff / GusseisenPlastik: Licht; Gusseisen: High stabilityPlastik: Fast machining; Gusseisen: Good for weighting\(3–)6 (ABS); \(8–)12 (Gusseisen)
Motor BracketAluminiumlegierung (6061)Hohe Festigkeit, heat dissipationLeicht zu bearbeiten; Anodization-friendly\(6–)10
Control PanelABS + PC BlendSchlagfestigkeit, IsolierungSmooth surface for silk-screen\(4–)7

Beispiel: Bedroom table fan blades use ABS plastic (low noise, leicht), while industrial floor fan blades use aluminum alloy (high strength for heavy-duty use).

2.2 Process Planning: Define Machining Strategies

Clear process planning ensures efficient and precise CNC machining.

  • Tool Selection by Material & Task:
MaterialMachining TaskTool TypeSpezifikationen
Plastik (ABS)RoughingCarbide Flat-End MillΦ6–10mm, 2–3 teeth
Plastik (ABS)AbschlussCarbide Ball-Nose MillΦ2–4mm, 4–6 teeth
AluminiumlegierungRoughingCarbide End MillΦ4–6mm, 2 teeth
AluminiumlegierungAbschlussCoated Carbide CutterΦ3–5mm, 4 teeth
  • Cutting Parameter Setting:
MaterialMachining StageGeschwindigkeit (rpm)Vorschubgeschwindigkeit (mm/tooth)Cutting Depth (mm)Coolant
ABS-KunststoffRoughing300–6000.2–0.50.5–2Compressed Air
ABS-KunststoffAbschluss800–15000.1–0.20.1–0,3Compressed Air
AluminiumlegierungRoughing1500–25000.1–0,31–3Emulsion
AluminiumlegierungAbschluss2500–40000.05–0.10.05–0.1Emulsion
  • Machining Sequence:
  1. Process large parts first (base, housing) to avoid collision with small parts.
  2. Machine complex curved surfaces (fan blades) in layers (0.5–1mm per layer) to ensure shape accuracy.
  3. Finish small precision parts (motor brackets, control panel buttons) last to prevent damage.

3. CNC-Bearbeitungsausführung: Turn Models into Components

This phase is the core of prototype creation, following amachine preparation → roughing → semi-finishing → finishingworkflow to ensure component precision.

3.1 Maschinenvorbereitung & Programmierung

Proper setup lays the groundwork for error-free machining.

  • Machine Selection:
  • Most electric fan parts (housing, blades) can be processed with a 3-axis CNC milling machine (positioning accuracy ±0.01mm).
  • For fan blades with spiral curved surfaces, benutze a 5-axis CNC machine or an indexing head to achieve multi-angle machining.
  • Programmierung & Calibration:
  1. Import 3D models into CAM software (z.B., Mastercam, PowerMill) to generate toolpaths.
  2. Set machining coordinate systems and safety planes (5–10mm above the workpiece) to avoid tool collision.
  3. Clamp materials (plastic plates, aluminum blocks) and calibrate the zero point using a touch probe (accuracy ±0.005mm).

3.2 Roughing & Semi-Finishing: Shape the Basic Form

  • Roughing:
  • Remove 80–90% of excess material to approach the component’s basic shape.
  • For plastic housing: Mill the outer contour first, then dig the internal cavity to avoid material collapse.
  • For metal base: Use a large-diameter cutter (Φ8–10mm) to quickly remove allowance; clean chips in real time to prevent scratches.
  • Semi-Finishing:
  • Correct roughing deviations and leave a 0.1–0.2mm allowance for finishing.
  • Focus on key structures:
  • Fan blade curved surfaces: Ensure smooth transitions between layers.
  • Motor bracket holes: Pre-drill to 90% of the final diameter for precise tapping later.

3.3 Abschluss: Achieve Precision & Oberflächenqualität

Finishing determines the prototype’s appearance and functional performance.

  • Surface Quality Requirements:
ComponentOberflächenrauheitProcessing Method
Plastic HousingRa ≤0.8μmPolishing with 800–1200 mesh sandpaper
Metal BladesRa ≤0.4μmSandstrahlen + Polieren; edge chamfering (R0.5mm)
Control PanelRa ≤1.6μmCoating with anti-scratch film after machining
  • Special Structure Machining:
  • Head-Shaking Mechanism: Machine gear grooves or connecting rod holes with high precision (tolerance ±0.03mm) to ensure smooth movement.
  • Fan Blade Mounting Holes: Drill and tap M3–M4 threads; ensure coaxiality with the motor shaft (error ≤0.02mm) to avoid jitter.

4. Nachbearbeitung & Montage: Enhance Performance & Ästhetik

Post-processing removes flaws and prepares components for assembly, while careful assembly ensures the prototype functions as intended.

4.1 Nachbearbeitung: Improve Appearance & Haltbarkeit

  • Entgraten & Cleaning:
  • Plastic Parts: Use a blade to remove burrs; clean with isopropyl alcohol to eliminate oil residue.
  • Metal Parts: Sand with 400–800 mesh sandpaper; für Aluminium, use a wire brush to remove oxidation.
  • Oberflächenbehandlung:
ComponentTreatment MethodZweck
Plastic HousingSpray matte/glossy paint; hot-stamp brand logosVerbessern Sie die Ästhetik; prevent scratches
Aluminum BladesAnodization (black/silver); anti-rust coatingImprove corrosion resistance; add texture
Control PanelSilk-screen buttons/icons; spray insulating paintEnsure visibility; prevent electrical leakage
  • Functional Enhancement:
  • Attach rubber anti-slip pads to the base (adhesive strength ≥5N/cm²).
  • Install waterproof membranes on the control panel to prevent dust/water ingress.

4.2 Montage & Debugging: Validate Functionality

Follow a sequential assembly order to avoid rework and ensure functional reliability.

  1. Pre-Assembly Check: Verify all parts meet specs (z.B., fan blade weight balance, screw hole alignment).
  2. Core Component Assembly:
  • Mount the motor to the bracket (use M3 screws, Drehmoment: 1.0–1.5 N·m).
  • Install fan blades onto the motor shaft (ensure tight fit; no axial movement).
  • Assemble the base and housing (use snaps or screws; check stability—tilt angle ≤5° without tipping).
  1. Functional Debugging:

|

Test ItemTools/MethodsPass Criteria
Airflow EfficiencyAnemometer, measured at a distance of 1 meter from the fanFloor fan: Minimum of 5 m/s on high gearTable fan: Minimum of 3 m/s on high gear
Head-Shaking FunctionProtractor and stopwatchOscillation angle: 60°–90°, as per design specificationsSmooth operation without jitterCompletion of one oscillation cycle within 10 seconds or less
Noise LevelSound level meter, measured at 1 meter in a quiet environmentHousehold fans: Maximum 40 dB – Industrial fans: Maximum 55 dB
Safety PerformanceForce gauge (for grille protection testing), Insulation tester (for power cord testing)Grille gap: 5 mm or less (ensuring fingertips cannot reach the blades) – Insulation resistance: 100 MΩ or higher

5. Application Cases: Tailor Processes to Fan Types

Different fan types require adjusted processes to meet their unique needs.

5.1 Household Table Fan Prototype

  • Focus: Silent operation and compact size.
  • Process Adjustments:
  • Use ABS plastic for blades (low noise) and optimize curvature to reduce wind turbulence.
  • Test 2–3 color schemes (Weiß, light gray) via spray painting to verify user preferences.
  • Prototype Value: Validate if the size (≤300×300×400mm) fits nightstands and if noise (≤35dB) avoids disturbing sleep.

5.2 Industrial Floor Fan Prototype

  • Focus: Durability and high airflow.
  • Process Adjustments:
  • Use aluminum alloy for blades and housing (hohe Festigkeit); anodize to resist corrosion in dusty environments.
  • Add reinforced ribs to the motor bracket (thickness 2mm) to support high-power motors (≥50W).
  • Prototype Value: Conduct 72-hour continuous operation tests; simulate high-temperature (40°C) environments to check component reliability.

Die Perspektive von Yigu Technology

Bei Yigu Technology, we see the CNC machining electric fan prototype process as afunctionality validator—it turns design ideas into tangible products while identifying flaws like jitter or excessive noise early. Our team prioritizes two pillars: precision and practicality. For fan blades, we use 5-axis machining to ensure curvature accuracy (±0,03 mm) and weight balance (difference ≤0.3g) for silent operation. For bases, we optimize counterweight structures and anti-slip pads to meet stability standards. We also integrate 3D scanning post-machining to verify dimensional accuracy, cutting rework rates by 25%. By focusing on these details, we help clients reduce time-to-market by 1–2 weeks. Whether you need a household or industrial fan prototype, we tailor solutions to your performance goals.

FAQ

  1. Q: How long does the entire CNC machining electric fan prototype process take?

A: Typically 8–12 working days. This includes 1–2 days for preparation (Design, Materialauswahl), 3–4 days for CNC machining, 1–2 days for post-processing, 1–2 days for assembly, Und 1 day for debugging/inspection.

  1. Q: Can I use plastic instead of aluminum alloy for industrial fan blades?

A: It’s not recommended. Industrial fans require high airflow and heavy-duty use—plastic blades may deform under long-term high-speed rotation (≥1500rpm) or break in dusty environments. Aluminum alloy blades offer better strength and heat dissipation, making them suitable for industrial scenarios.

  1. Q: What causes fan jitter during operation, and how to fix it?

A: Common causes are uneven fan blade weight (difference >0.5G) or misaligned motor shaft mounting (coaxiality error >0.02mm). Korrekturen: Re-balance blades by grinding excess material (reduce weight difference to ≤0.3g); re-machine the motor bracket to correct shaft alignment (coaxiality ≤0.02mm). This resolves 90% of jitter issues in 1–2 hours.

Index
Scrollen Sie nach oben