Der CNC machining electric fan prototype process is a systematic workflow that transforms design concepts into physical prototypes, Validierung der Authentizität des Aussehens, strukturelle Stabilität, Luftstromeffizienz, und Kernfunktionslogik (z.B., kopfschüttelnde Glätte, Lärmschutz). In diesem Artikel wird der Prozess mithilfe datengesteuerter Tabellen Schritt für Schritt aufgeschlüsselt – vom vorläufigen Entwurf bis zum endgültigen Debugging, praktische Richtlinien, and troubleshooting tips to help you navigate key challenges and ensure prototype success.
1. Vorläufige Vorbereitung: Define Requirements & Lay the Foundation
Preliminary preparation sets the direction for the entire prototype development. It focuses on two core tasks: requirements analysis & conceptual design Und 3D-Modellierung & structural detailing, both tailored to the unique needs of electric fans (z.B., silent operation for bedrooms, stability for floor fans).
1.1 Requirements Analysis & Conceptual Design
Before starting machining, clarify functional and appearance requirements to avoid misaligned development goals.
- Functional Requirements Clarification:
| Fan Type | Core Functional Focus | Key Specs Example |
| Floor Fan | Head-shaking range, Stabilität, high airflow | Head-shaking angle: 60°–90°; Base weight ≥2kg |
| Table Fan | Silent operation, compact size, low power | Noise ≤40dB; Size ≤300×300×400mm; Power ≤30W |
| Ceiling Fan | Load-bearing capacity, uniform airflow | Load capacity ≥5kg; Airflow coverage ≥15m² |
- Appearance Concept Design:
- Create preliminary sketches or 3D drafts using tools like SketchUp oder Nashorn, considering:
- Aesthetic Coordination: Rounded edges (radius 3–5mm) for household fans to fit home decor; geometric shapes for industrial fans.
- Human-Computer Interaction: Button/knob layout (z.B., 3 wind-speed buttons on the fan head for easy reach); indicator light positions (visible but not glaring).
- Environmental Adaptation: Dust-proof grilles for industrial fans; anti-slip base pads for table fans.
Why is this important? Skipping requirement clarification can lead to rework—for example, a bedroom fan prototype without silent design may need 25% more time to optimize fan blade curvature and motor mounting.
1.2 3D-Modellierung & Structural Detailing
Use professional CAD software to translate concepts into precise models, ensuring processability for CNC machining.
- Software Selection: Prioritize SolidWorks, UG NX, oder Pro/E—they support parametric design, allowing easy adjustment of dimensions (z.B., fan blade length, base diameter) and compatibility with CAM software.
- Core Structural Design:
- Component Breakdown: Split the fan into parts like housing, fan blades, motor bracket, base, Und control panel for separate machining.
- Key Structure Optimization:
- Housing: Determine material thickness (1–3mm for plastic, 2–4mm for metal) and assembly structures (snaps, M2–M3 screw holes with ±0.1mm tolerance).
- Fan Blades: Design curved surfaces and angles (15°–25° attack angle) to balance airflow and noise; ensure blade weight difference ≤0.5g for anti-jitter.
- Base: Add weighted blocks or counterweight structures (z.B., 1kg metal plate in plastic bases) to improve stability; integrate rubber anti-slip pads (thickness 2–3mm).
- Head-Shaking Mechanism: For floor/table fans, design gear or connecting rod structures (gear module: 0.5–1mm) to ensure smooth left-right swinging.
- Detail Features: Add brand logos (embossed height 0.8–1mm), heat dissipation holes (diameter 2–3mm, grid pattern), and button icons (silk-screen ready).
2. Materialauswahl & Process Planning: Match Materials to Functions
Choosing the right materials and defining machining strategies are critical for prototype performance. This phase follows a “material selection → parameter setting → sequence planning” Arbeitsablauf.
2.1 Materialauswahl: Balance Performance & Kosten
Different components require materials with specific properties (z.B., lightweight for fan blades, durability for bases). The table below compares suitable options:
| Component | Recommended Material | Schlüsseleigenschaften | Processing Advantages | Kostenspanne (pro kg) |
| Housing | ABS-Kunststoff / Aluminiumlegierung | Plastik: Leicht, niedrige Kosten; Metall: Dauerhaft | Plastik: Easy cutting; Metall: Good for anodization | \(3–)6 (ABS); \(6–)10 (Aluminium) |
| Fan Blades | ABS-Kunststoff / Aluminiumlegierung | Plastik: Low noise; Metall: Hohe Festigkeit | Plastik: No burrs; Metall: Suitable for curved machining | \(3–)6 (ABS); \(6–)10 (Aluminium) |
| Base | ABS-Kunststoff / Gusseisen | Plastik: Licht; Gusseisen: High stability | Plastik: Fast machining; Gusseisen: Good for weighting | \(3–)6 (ABS); \(8–)12 (Gusseisen) |
| Motor Bracket | Aluminiumlegierung (6061) | Hohe Festigkeit, heat dissipation | Leicht zu bearbeiten; Anodization-friendly | \(6–)10 |
| Control Panel | ABS + PC Blend | Schlagfestigkeit, Isolierung | Smooth surface for silk-screen | \(4–)7 |
Beispiel: Bedroom table fan blades use ABS plastic (low noise, leicht), while industrial floor fan blades use aluminum alloy (high strength for heavy-duty use).
2.2 Process Planning: Define Machining Strategies
Clear process planning ensures efficient and precise CNC machining.
- Tool Selection by Material & Task:
| Material | Machining Task | Tool Type | Spezifikationen |
| Plastik (ABS) | Roughing | Carbide Flat-End Mill | Φ6–10mm, 2–3 teeth |
| Plastik (ABS) | Abschluss | Carbide Ball-Nose Mill | Φ2–4mm, 4–6 teeth |
| Aluminiumlegierung | Roughing | Carbide End Mill | Φ4–6mm, 2 teeth |
| Aluminiumlegierung | Abschluss | Coated Carbide Cutter | Φ3–5mm, 4 teeth |
- Cutting Parameter Setting:
| Material | Machining Stage | Geschwindigkeit (rpm) | Vorschubgeschwindigkeit (mm/tooth) | Cutting Depth (mm) | Coolant |
| ABS-Kunststoff | Roughing | 300–600 | 0.2–0.5 | 0.5–2 | Compressed Air |
| ABS-Kunststoff | Abschluss | 800–1500 | 0.1–0.2 | 0.1–0,3 | Compressed Air |
| Aluminiumlegierung | Roughing | 1500–2500 | 0.1–0,3 | 1–3 | Emulsion |
| Aluminiumlegierung | Abschluss | 2500–4000 | 0.05–0.1 | 0.05–0.1 | Emulsion |
- Machining Sequence:
- Process large parts first (base, housing) to avoid collision with small parts.
- Machine complex curved surfaces (fan blades) in layers (0.5–1mm per layer) to ensure shape accuracy.
- Finish small precision parts (motor brackets, control panel buttons) last to prevent damage.
3. CNC-Bearbeitungsausführung: Turn Models into Components
This phase is the core of prototype creation, following a “machine preparation → roughing → semi-finishing → finishing” workflow to ensure component precision.
3.1 Maschinenvorbereitung & Programmierung
Proper setup lays the groundwork for error-free machining.
- Machine Selection:
- Most electric fan parts (housing, blades) can be processed with a 3-axis CNC milling machine (positioning accuracy ±0.01mm).
- For fan blades with spiral curved surfaces, benutze a 5-axis CNC machine or an indexing head to achieve multi-angle machining.
- Programmierung & Calibration:
- Import 3D models into CAM software (z.B., Mastercam, PowerMill) to generate toolpaths.
- Set machining coordinate systems and safety planes (5–10mm above the workpiece) to avoid tool collision.
- Clamp materials (plastic plates, aluminum blocks) and calibrate the zero point using a touch probe (accuracy ±0.005mm).
3.2 Roughing & Semi-Finishing: Shape the Basic Form
- Roughing:
- Remove 80–90% of excess material to approach the component’s basic shape.
- For plastic housing: Mill the outer contour first, then dig the internal cavity to avoid material collapse.
- For metal base: Use a large-diameter cutter (Φ8–10mm) to quickly remove allowance; clean chips in real time to prevent scratches.
- Semi-Finishing:
- Correct roughing deviations and leave a 0.1–0.2mm allowance for finishing.
- Focus on key structures:
- Fan blade curved surfaces: Ensure smooth transitions between layers.
- Motor bracket holes: Pre-drill to 90% of the final diameter for precise tapping later.
3.3 Abschluss: Achieve Precision & Oberflächenqualität
Finishing determines the prototype’s appearance and functional performance.
- Surface Quality Requirements:
| Component | Oberflächenrauheit | Processing Method |
| Plastic Housing | Ra ≤0.8μm | Polishing with 800–1200 mesh sandpaper |
| Metal Blades | Ra ≤0.4μm | Sandstrahlen + Polieren; edge chamfering (R0.5mm) |
| Control Panel | Ra ≤1.6μm | Coating with anti-scratch film after machining |
- Special Structure Machining:
- Head-Shaking Mechanism: Machine gear grooves or connecting rod holes with high precision (tolerance ±0.03mm) to ensure smooth movement.
- Fan Blade Mounting Holes: Drill and tap M3–M4 threads; ensure coaxiality with the motor shaft (error ≤0.02mm) to avoid jitter.
4. Nachbearbeitung & Montage: Enhance Performance & Ästhetik
Post-processing removes flaws and prepares components for assembly, while careful assembly ensures the prototype functions as intended.
4.1 Nachbearbeitung: Improve Appearance & Haltbarkeit
- Entgraten & Cleaning:
- Plastic Parts: Use a blade to remove burrs; clean with isopropyl alcohol to eliminate oil residue.
- Metal Parts: Sand with 400–800 mesh sandpaper; für Aluminium, use a wire brush to remove oxidation.
- Oberflächenbehandlung:
| Component | Treatment Method | Zweck |
| Plastic Housing | Spray matte/glossy paint; hot-stamp brand logos | Verbessern Sie die Ästhetik; prevent scratches |
| Aluminum Blades | Anodization (black/silver); anti-rust coating | Improve corrosion resistance; add texture |
| Control Panel | Silk-screen buttons/icons; spray insulating paint | Ensure visibility; prevent electrical leakage |
- Functional Enhancement:
- Attach rubber anti-slip pads to the base (adhesive strength ≥5N/cm²).
- Install waterproof membranes on the control panel to prevent dust/water ingress.
4.2 Montage & Debugging: Validate Functionality
Follow a sequential assembly order to avoid rework and ensure functional reliability.
- Pre-Assembly Check: Verify all parts meet specs (z.B., fan blade weight balance, screw hole alignment).
- Core Component Assembly:
- Mount the motor to the bracket (use M3 screws, Drehmoment: 1.0–1.5 N·m).
- Install fan blades onto the motor shaft (ensure tight fit; no axial movement).
- Assemble the base and housing (use snaps or screws; check stability—tilt angle ≤5° without tipping).
- Functional Debugging:
|
| Test Item | Tools/Methods | Pass Criteria |
| Airflow Efficiency | Anemometer, measured at a distance of 1 meter from the fan | – Floor fan: Minimum of 5 m/s on high gear – Table fan: Minimum of 3 m/s on high gear |
| Head-Shaking Function | Protractor and stopwatch | – Oscillation angle: 60°–90°, as per design specifications – Smooth operation without jitter – Completion of one oscillation cycle within 10 seconds or less |
| Noise Level | Sound level meter, measured at 1 meter in a quiet environment | – Household fans: Maximum 40 dB – Industrial fans: Maximum 55 dB |
| Safety Performance | Force gauge (for grille protection testing), Insulation tester (for power cord testing) | – Grille gap: 5 mm or less (ensuring fingertips cannot reach the blades) – Insulation resistance: 100 MΩ or higher |
5. Application Cases: Tailor Processes to Fan Types
Different fan types require adjusted processes to meet their unique needs.
5.1 Household Table Fan Prototype
- Focus: Silent operation and compact size.
- Process Adjustments:
- Use ABS plastic for blades (low noise) and optimize curvature to reduce wind turbulence.
- Test 2–3 color schemes (Weiß, light gray) via spray painting to verify user preferences.
- Prototype Value: Validate if the size (≤300×300×400mm) fits nightstands and if noise (≤35dB) avoids disturbing sleep.
5.2 Industrial Floor Fan Prototype
- Focus: Durability and high airflow.
- Process Adjustments:
- Use aluminum alloy for blades and housing (hohe Festigkeit); anodize to resist corrosion in dusty environments.
- Add reinforced ribs to the motor bracket (thickness 2mm) to support high-power motors (≥50W).
- Prototype Value: Conduct 72-hour continuous operation tests; simulate high-temperature (40°C) environments to check component reliability.
Die Perspektive von Yigu Technology
Bei Yigu Technology, we see the CNC machining electric fan prototype process as a “functionality validator”—it turns design ideas into tangible products while identifying flaws like jitter or excessive noise early. Our team prioritizes two pillars: precision and practicality. For fan blades, we use 5-axis machining to ensure curvature accuracy (±0,03 mm) and weight balance (difference ≤0.3g) for silent operation. For bases, we optimize counterweight structures and anti-slip pads to meet stability standards. We also integrate 3D scanning post-machining to verify dimensional accuracy, cutting rework rates by 25%. By focusing on these details, we help clients reduce time-to-market by 1–2 weeks. Whether you need a household or industrial fan prototype, we tailor solutions to your performance goals.
FAQ
- Q: How long does the entire CNC machining electric fan prototype process take?
A: Typically 8–12 working days. This includes 1–2 days for preparation (Design, Materialauswahl), 3–4 days for CNC machining, 1–2 days for post-processing, 1–2 days for assembly, Und 1 day for debugging/inspection.
- Q: Can I use plastic instead of aluminum alloy for industrial fan blades?
A: It’s not recommended. Industrial fans require high airflow and heavy-duty use—plastic blades may deform under long-term high-speed rotation (≥1500rpm) or break in dusty environments. Aluminum alloy blades offer better strength and heat dissipation, making them suitable for industrial scenarios.
- Q: What causes fan jitter during operation, and how to fix it?
A: Common causes are uneven fan blade weight (difference >0.5G) or misaligned motor shaft mounting (coaxiality error >0.02mm). Korrekturen: Re-balance blades by grinding excess material (reduce weight difference to ≤0.3g); re-machine the motor bracket to correct shaft alignment (coaxiality ≤0.02mm). This resolves 90% of jitter issues in 1–2 hours.
