Ultra High Carbon Steel: Eigenschaften, Verwendung, Manufacturing for Industrial Applications

Metallteile benutzerdefinierte Herstellung

If you work in industries like tooling, Bergbau, oder Landwirtschaft, you know the value of materials that stand up to extreme wear and high stress.Ultra high carbon steel (UHCS)—defined by itshoher Kohlenstoff (C) Inhalt (1.0–2.1% by weight)—delivers unmatched hardness and strength for tough tasks. Dieser Leitfaden bricht seine Schlüsselmerkmale ab, reale Verwendungen, wie es gemacht ist, and how it compares to other steels—so you can pick the right material for high-wear, high-strength needs.

1. Core Material Properties of Ultra High Carbon Steel

Ultra high carbon steel’s unique performance comes from its chemical makeup and resulting physical/mechanical traits. Lassen Sie uns sie deutlich aufschlüsseln:

1.1 Chemische Zusammensetzung

The high carbon content is the star here, but alloying elements fine-tune its properties:

  • Hoher Kohlenstoff (C): 1.0–2.1% (the main driver of its ultra-high hardness and strength).
  • Mangan (Mn): 0.30–1,00% (verbessert die Verhärtbarkeit und verringert die Brödheit).
  • Silizium (Und): 0.15–0,35% (boosts strength and resistance to oxidation during heat treatment).
  • Legierungselemente: Kleine Mengen von Chrom (Cr) (0.50–1,50%) für Verschleißfestigkeit; Molybdän (MO) (0.20–0,50%) Für Hochtemperaturstärke; Vanadium (V) (0.10–0,20%) for fine-grain structure (verbessert die Zähigkeit).
  • Harmful impurities: Phosphor (P) (<=0.025%) Und Schwefel (S) (<=0.015%) are minimized to avoid cracking and brittleness.

1.2 Physische Eigenschaften

Ultra high carbon steel’s physical traits reflect its dense, strong structure:

EigentumTypischer Wert
Dichte7.87 g/cm³
Schmelzpunkt1420–1480 ° C.
Wärmeleitfähigkeit40 W/(m · k)
Wärmeleitkoeffizient12.5 × 10⁻⁶/° C. (20–100 ° C.)
Elektrischer Widerstand0.22 μω · m

1.3 Mechanische Eigenschaften

This is where ultra high carbon steel dominates—its strength and hardness are ideal for high-wear tasks:

  • Ultrahohe Zugfestigkeit: 1,500–2.500 MPa (far higher than low carbon steel’s 400 MPA).
  • Hohe Ertragsfestigkeit: 1,200–2.000 MPa (resists permanent deformation under extreme loads).
  • Hohe Härte: 55–65 HRC (on the Rockwell scale—hard enough to cut through other metals).
  • Hohe Auswirkungen: 15–30 J (good for tools that take occasional shocks, wie Hämmer).
  • Niedrige Duktilität & low elongation: 2–5% elongation (can’t bend much without breaking—trade-off for hardness).
  • Hohe Müdigkeitsbeständigkeit: Stand der wiederholten Belastung (ideal for rotating parts like grinding balls).
  • High fracture toughness: Resists sudden cracking (critical for mining equipment).

1.4 Andere wichtige Eigenschaften

  • Ausgezeichneter Verschleißfestigkeit: The high carbon content forms hard carbides, making it last 3–5x longer than low carbon steel in wear-heavy tasks.
  • Gute Korrosionsbeständigkeit: Alloying elements like Cr protect against rust (better than low carbon steel, but not as good as stainless steel).
  • Hochtemperaturstärke: Maintains hardness up to 500°C (useful for hot work tools like forging dies).
  • Poor weldability: High carbon content causes cracking during welding (needs pre-heating and post-heating—often avoided for welded parts).
  • Poor formability: Can’t be bent or stamped easily (usually shaped via forging or grinding).

2. Real-World Applications of Ultra High Carbon Steel

Ultra high carbon steel’s hardness and wear resistance make it a top choice for tools and parts that face extreme stress. Hier sind seine häufigsten Verwendungszwecke, backed by case studies:

2.1 Schneidwerkzeuge

Its high hardness makes it perfect for cutting other materials:

  • Fräser, Übungen, and lathe tools: Used to machine metal parts. Fallstudie: A manufacturing plant switched to ultra high carbon steel drills for aluminum machining—drill lifespan increased by 400% vs. low carbon steel drills.
  • Hand tools: Hämmer, Meißel, and axes (the steel’s hardness keeps edges sharp longer).

2.2 Formen und Sterben

For shaping other materials under pressure:

  • Kalte Arbeitswerkzeuge: Punch dies and stamping dies (used for bending metal sheets). Fallstudie: A automotive parts maker used ultra high carbon steel cold dies for sheet metal stamping—die maintenance frequency dropped by 70%.
  • Heiße Arbeitswerkzeuge: Forging dies and extrusion dies (handles high heat and pressure). Fallstudie: A forging shop used ultra high carbon steel dies for steel bar forging—die replacement intervals extended from 2 Wochen zu 2 Monate.

2.3 Landwirtschaftliche Maschinen

Tough enough for rough farm work:

  • Plowshares and harrows: Cut through soil and rocks without wearing down. Fallstudie: A farm equipment manufacturer used ultra high carbon steel plowshares—share lifespan doubled vs. Standardstahl, reducing farmer replacement costs.

2.4 Bergbau und Ausgrabung

For equipment that grinds or crushes hard materials:

  • Felsbärte, Kugeln schleifen, and grinding rods: Used to break down ore. Fallstudie: A gold mine switched to ultra high carbon steel grinding balls—grinding efficiency improved by 25%, and ball replacement costs dropped by 60%.
  • Excavator teeth: Resist wear from dirt and rocks (last 3x longer than low carbon steel teeth).

2.5 Marine

For parts that need strength and corrosion resistance:

  • Schiffspropeller: Withstands saltwater wear and high torque. Fallstudie: A shipyard used ultra high carbon steel propellers for cargo ships—propeller maintenance costs fell by 30% vs. standard steel propellers.
  • Meeresstrukturen: Mooring chains and anchor parts (resist rust and impact from waves).

3. Manufacturing Techniques for Ultra High Carbon Steel

Making ultra high carbon steel requires precise processes to balance hardness and avoid brittleness. So wird es produziert:

3.1 Stahlherstellungsprozesse

Two main methods create the base steel:

  • Elektrischer Lichtbogenofen (EAF): Most common for ultra high carbon steel. Uses scrap steel, adds carbon (via coal or graphite), und legierte Elemente (Cr, MO) to reach the desired composition. Ideal for small to medium batches.
  • Basis -Sauerstoffofen (Bof): Rarely used for ultra high carbon steel—BOF typically produces low to medium carbon steel. Only used for large-scale production when scrap is scarce.

3.2 Wärmebehandlung

Heat treatment is critical to unlocking its hardness and toughness:

  • Löschen und Temperieren: Der wichtigste Schritt. Steel is heated to 800–900°C (to dissolve carbon), in Öl gelöscht (to lock in hardness), then tempered at 200–400°C (reduziert die Bröckchen und behält die Härte bei). This gives it the 55–65 HRC hardness range.
  • Glühen: Heats to 700–800°C, Langsam abkühlen. Softens the steel temporarily (to make it easier to machine or grind), then quenched later to restore hardness.
  • Normalisierung: Heats to 900–950°C, air-cools. Improves uniformity in the steel’s structure (prepares it for quenching).
  • Kohlensäure: Adds more carbon to the surface (for parts that need extra surface hardness, wie Zahnräder).
  • Nitriding: Adds nitrogen to the surface (boosts wear resistance and corrosion resistance—used for cutting tools).

3.3 Bildungsprozesse

Due to its poor formability, ultra high carbon steel is shaped via:

  • Heißes Rollen: Heated to 1100–1200°C, rolled into bars or plates (the only way to shape it while soft).
  • Schmieden: Hämmer oder Pressen erhitzten Stahl in komplexe Formen (used for dies and tool heads).
  • Kaltes Rollen: Rarely used—only for thin sheets, and requires high pressure (risk of cracking).
  • Extrusion & Stempeln: Almost never used (poor formability causes breaking).

3.4 Oberflächenbehandlung

To boost performance and durability:

  • Überzug: Chromium plating adds extra wear resistance (used for cutting tools and dies).
  • Beschichtung: Titannitrid (Zinn) Beschichtung (gold color) reduces friction and wear (common on drills and milling cutters).
  • Schuss sich angeren: Blasts the surface with small metal balls—reduces stress and improves fatigue resistance (used for grinding balls).
  • Polieren: Smooths the surface (reduces friction for moving parts like propellers).

4. How Ultra High Carbon Steel Compares to Other Materials

Die Auswahl des richtigen Materials hängt von Ihren Bedürfnissen ab (Härte, kosten, Formbarkeit). Here’s how ultra high carbon steel stacks up:

MaterialHärte (HRC)Zugfestigkeit (MPA)Resistenz tragenSchweißbarkeitKosten (vs. Ultra High Carbon Steel)Am besten für
Ultra High Carbon Steel55–651,500–2,500ExzellentArm100%Schneidwerkzeuge, Kugeln schleifen
Niedriger Kohlenstoffstahl15–25300–500ArmExzellent50%Schweißteile, Rohre
HSLA -Stahl30–40600–1,000GutGut80%Brücken, Fahrzeugrahmen
Edelstahl (304)25–35500–700GutExzellent300%Lebensmittelausrüstung, medizinische Werkzeuge
Werkzeugstahl (H13)50–551,200–1.800Sehr gutGerecht150%Heiße Arbeit stirbt

Key Takeaways:

  • vs. Niedriger Kohlenstoffstahl: Ultra high carbon steel is 3–4x harder and 4x stronger—worth the extra cost for high-wear tasks.
  • vs. HSLA -Stahl: Ultra high carbon steel is harder (55–65 HRC vs. 30–40 HRC) but less formable—use HSLA for structural parts, UHCS for tools.
  • vs. Edelstahl: Ultra high carbon steel is harder and 67% cheaper—use stainless steel only if corrosion resistance is critical.
  • vs. Werkzeugstahl: Ultra high carbon steel is harder (55–65 HRC vs. 50–55 HRC) but less tough—better for light-wear tools like drills.

5. Yigu Technology’s Perspective on Ultra High Carbon Steel

Bei Yigu Technology, we recommend ultra high carbon steel for clients needing extreme wear resistance and hardness. Its 55–65 HRC hardness and 1,500+ MPa tensile strength make it irreplaceable for cutting tools and mining equipment—we’ve seen clients cut replacement costs by 50%+ after switching from standard steel. While its poor weldability and formability limit use cases, we help clients design around these traits (Z.B., using forging instead of stamping). For high-wear industrial tasks where durability is non-negotiable, ultra high carbon steel remains a top material choice.

FAQ About Ultra High Carbon Steel

1. Can ultra high carbon steel be welded?

Es kann, but it’s not easy. Its high carbon content causes cracking, so you need pre-heating (auf 200–300 ° C.) und Nachheizung (to relieve stress). Für die meisten Projekte, we recommend avoiding welding—use bolted or riveted connections instead.

2. How long does ultra high carbon steel last in wear-heavy tasks?

Es hängt von der Anwendung ab, but it typically lasts 3–5x longer than low carbon steel. Zum Beispiel, grinding balls in mines last 6–12 months vs. 1–2 months for standard steel balls.

3. Is ultra high carbon steel more expensive than other steels?

Ja, but it’s cost-effective for high-wear tasks. It’s 2x more expensive than low carbon steel but lasts 4x longer—so total ownership cost is lower. It’s also cheaper than stainless steel (67% weniger) und Werkzeugstahl (33% weniger) in most cases.

Scrollen Sie nach oben