Step-by-Step Process for Plastic Injection Molding Prototype Models

thermoplatic injection molding plastic parts

Erstellen a plastic injection molding prototype is a critical step in product development—it lets you test design feasibility, Leistung validieren, and avoid costly mistakes in mass production. Im Gegensatz zu Massenproduzenten, prototypes prioritize speed, cost-efficiency, und Anpassungsfähigkeit, while still following core injection molding principles. Below is a complete, actionable breakdown of the prototype development process, from material pick to final application.

1. Material Selection for Prototypes

Das richtige Material zu wählen ist das erste (and often make-or-break) step for prototypes. The goal is to balance Materialeigenschaften with prototype goals—whether you’re testing durability, Aussehen, oder Kosten. Here’s how to navigate key choices:

MaterialkategorieSchlüsselbeispieleKey Considerations for Prototypes
ThermoplastikPp, ABS, PC, Nylon, HAUSTIERMost common for prototypes—melt and re-solidify, Einfach einstellen. Ideal for testing form, fit, and basic function.
ThermosetsEpoxid, PhenolharzeHarden permanently after molding—good for high-heat or chemical-resistance tests. Less common for prototypes (hard to modify).
ZusatzstoffeFüllstoffe (Glasfaser), UV -Stabilisatoren, FlammschutzmittelAdd only if the prototype needs to mimic final part performance (Z.B., glass fiber for stiffness). Skip non-essential additives to cut costs.
ColorantsLiquid dyes, masterbatchesUse only if appearance testing is critical. Clear or natural resins save time and money for functional prototypes.

Für die Spitze: Priorisieren Kosteneffizienz for early-stage prototypes—opt for common resins like PP or ABS instead of high-end materials like PEEK. For supplier selection, choose vendors who offer small batch sizes (1-5 kg) to avoid waste. Auch, check Dichte (affects part weight) Und Durchflussrate (ensures the resin fills small prototype mold cavities easily).

2. Design Considerations for Prototype Success

Prototype design should be “mold-friendly” to speed up production and reduce defects. Even small design tweaks can save days of rework. Here’s a checklist of critical factors:

Core Design Elements & Tipps

  • Part Design: Keep it simple—avoid overcomplicating with unnecessary features (Z.B., intricate logos) in early prototypes. Focus on testing the part’s core function.
  • Wandstärke: Zielen nach 1-3 mm (uniform across the part). Dünnere Wände (<1 mm) cause short shots; thicker walls (>3 mm) lead to sink marks. Use gradual transitions if thickness must change.
  • Entwurfswinkel: Hinzufügen 1-3 degrees to all vertical surfaces. This lets the prototype eject smoothly from the mold—no more stuck parts or scratches.
  • Rippen & Chefs: Rippen (für Steifheit) should be 0.5x the wall thickness; Chefs (für Schrauben) should have a diameter 2x the screw size. Filets hinzufügen (radius = 0.5 mm) to avoid stress cracks.
  • Unterkuppelt: Minimize them! Unterkuppelt (Z.B., side grooves) require complex mold slides, which increase prototype cost and lead time. Bei Bedarf, use temporary solutions like post-machining.
  • Toleranzen: Loosen tolerances for early prototypes (±0.1 mm is enough for fit tests). Enge Toleranzen (<± 0,05 mm) add cost and slow production.

Design Validation Tools

Before finalizing the design:

  1. Verwenden CAD Modelling (Z.B., Solidworks, Fusion 360) to create 3D models—share these with your mold maker to avoid miscommunication.
  2. Run Mold Flow Simulation (Z.B., Autodesk Moldflow) to test resin flow. This catches issues like air traps or uneven filling early.
  3. Für Teile mit hohem Stress (Z.B., Kfz -Klammern), verwenden Finite -Elemente -Analyse (Fea) to test strength—this avoids building prototypes that fail under load.

3. Mold Preparation for Prototypes

Prototypenformen (called “soft tools”) are simpler and cheaper than mass-production molds. They’re often made from aluminum (statt Stahl) to speed up machining. Hier ist der Schlüsselprozess:

Mold Components & Vorbereitungsschritte

KomponenteZweckPrototype-Specific Tips
Mold BaseProvides structure for the moldUse standard-sized aluminum bases (Z.B., 150×150 mm) to cut costs.
Hohlräume & CoresShape the prototype (cavity = outer surface; core = inner surface)For single-cavity molds (most prototypes), machine cavities directly into the aluminum—faster than multi-cavity molds.
Ejector PinsPush the prototype out of the moldVerwenden 2-4 Kleine Stifte (3-5 mm Durchmesser) — place them near thick areas to avoid warping.
KühlkanäleCool the mold to set the resinDrill simple straight channels (instead of complex curved ones) — aluminum cools quickly, so basic channels work.
Heating ElementsWarm the mold (for resins with high melting points)Skip unless using resins like PC (Schmelzpunkt >220° C). Aluminum retains heat well, so extra heating is rarely needed.

Mold Making Process

  1. Mold Machining: Use CNC milling for simple shapes; verwenden EDM (Elektrische Entladungsbearbeitung) only for fine details (Z.B., kleine Löcher). Aluminum machines 5x faster than steel—perfect for quick prototypes.
  2. Mold Polishing: Polish cavities to a #4 beenden (matt) Für funktionelle Prototypen. High-gloss finishes (#8) are only needed for appearance tests.
  3. Formenbau: Assemble components loosely first—test fit with a dummy resin (Z.B., Wachs) to ensure alignment. Tighten screws only after test fitting.
  4. Mold Testing: Run 5-10 test shots with scrap resin. Check for leaks, Fehlausrichtung, or stuck parts—fix issues before running the actual prototype batch.

4. The Injection Molding Process for Prototypes

Prototype injection molding focuses on speed and flexibility—you’ll often run small batches (10-50 Teile) and adjust parameters on the fly. Here’s how to execute it smoothly:

Key Machine Settings (for ABS Prototype Example)

ParameterOptimaler BereichWarum es für Prototypen wichtig ist
Clamping Force50-100 TonnenLower force works for small prototypes—avoids damaging the aluminum mold.
Injektionsdruck60-90 MPAToo high = flash (excess resin); too low = short shots. Start low and increase if needed.
Schmelztemperatur210-240° CKeep 10-15°C lower than mass production—prevents resin degradation in small batches.
Zykluszeit30-60 SekundenLonger than mass production (gives aluminum molds time to cool). Rushing leads to warped parts.
Schraubengeschwindigkeit60-100 DrehzahlSlow speed mixes resin evenly without generating excess heat.
Drying Process80° C für 2-3 Std. (für abs)Critical for resins like nylon or PC—moisture causes bubbles. Skip only for dry resins like PP.

Step-by-Step Molding Workflow

  1. Materielle Fütterung: Laden 1-2 kg of resin into the hopper (small batches reduce waste). Add a few pellets of colorant if needed.
  2. Düsendesign: Use a small-diameter nozzle (3-5 mm) to fill narrow prototype cavities. Keep the nozzle 1-2 mm from the mold to avoid leaks.
  3. Einspritzgeschwindigkeit: Start at 40-60 mm/s. If the part has thin walls, increase to 70-80 mm/s to avoid short shots.
  4. Packing Pressure: Anwenden 80-90% of injection pressure for 2-3 Sekunden. This fills any small gaps in the prototype.
  5. Kühlzeit: Let the mold cool for 15-25 Sekunden (aluminum cools fast!). Eject the part only when it’s cool to the touch.

Common Issue Fix: If the prototype has flash (excess resin), reduce injection pressure by 5-10 MPA. If it has short shots, increase melt temperature by 5-10°C.

5. Post-Processing and Finishing for Prototypes

Post-processing turns raw molded parts into usable prototypes. Focus on tasks that support your test goals—skip unnecessary steps to save time.

Essential vs. Optionale Nachbearbeitung

AufgabeZweckWhen to Use
Deburring/DeflashingRemove excess resin from edges/parting linesAlways do this—sharp burrs ruin fit tests. Use a hand file (für kleine Chargen) or rotary brush.
TrimmenCut off runner systems (the plastic channels that feed resin)Always do this—runners make prototypes hard to test. Use scissors (for soft resins) oder eine Bandsäge.
Bearbeitung (Bohren/Gewindeschneiden)Add holes or threads for assemblyOnly if testing assembly (Z.B., attaching the prototype to another part). Use a handheld drill for small holes.
Painting/PlatingImprove appearanceOnly for appearance tests (Z.B., showing the prototype to stakeholders). Verwenden Sie Sprühfarbe (trocknet ein 30 Minuten) for quick results.
MontageJoin multiple prototype partsVerwenden Ultraschallschweißen (schnell, no adhesives) oder Kleberbindung (niedrige Kosten) für kleine Chargen. Avoid rivets (permanent, hard to modify).

Für die Spitze: Für funktionelle Prototypen, skip painting/plating—focus on deburring and trimming. For appearance prototypes, verwenden Drucken (Z.B., pad printing) for logos instead of expensive plating.

6. Applications and Uses of Injection Molding Prototypes

Prototypes are used across industries to de-risk product development. Here’s how different sectors leverage them:

Industry-Specific Uses

  • Kfz -Teile: Test fit of interior components (Z.B., Dashboard -Clips) or durability of small parts (Z.B., Türgriffe).
  • Unterhaltungselektronik: Validate the size of phone cases or the fit of charging port covers.
  • Medizinprodukte: Test the ergonomics of syringes or the compatibility of plastic parts with liquids.
  • Verpackung: Check if a bottle prototype holds liquid without leaking or if a lid seals properly.
  • Spielzeug: Test safety (Z.B., no small parts that break off) und Haltbarkeit (Z.B., withstands dropping).
  • Luft- und Raumfahrtkomponenten: Test lightweight parts (Z.B., Plastikklammern) for strength under low pressure.

Prototype Stages in Product Development

  1. Concept Prototype: Early-stage, niedrige Kosten (Z.B., ABS -Teile) to test basic form.
  2. Funktioneller Prototyp: Mid-stage, uses final material (Z.B., PC) to test performance.
  3. Pre-Production Prototype: Late-stage, identical to mass-produced parts—used for final validation.

Yigu Technology’s View

Bei Yigu Technology, we know prototype success hinges on balancing speed, kosten, and clarity of goals. For plastic injection molding prototypes, we prioritize aluminum molds (schnell, kostengünstig) and common thermoplastics for early stages, then shift to final materials for functional tests. We integrate CAD, Mold Flow, and FEA to catch issues before molding, Zeit verkürzen 30%. Our focus is on delivering prototypes that solve real problems—whether it’s testing a fit, validating a design, or impressing stakeholders.

FAQs

  1. Q: How long does it take to make a plastic injection molding prototype?

A: 1-2 weeks for simple prototypes (aluminum mold + ABS -Teile). Komplexe Prototypen (with undercuts or FEA testing) nehmen 3-4 Wochen.

  1. Q: Can I use the same mold for prototype and mass production?

A: Rarely—prototype molds are aluminum (weich, wears out after 1,000+ Schüsse), while mass-production molds are steel (hart, dauert 100,000+ Schüsse). Use the prototype mold to refine the design, then make a steel mold for production.

  1. Q: How much does a plastic injection molding prototype cost?

A: \(500-\)2,000 for a simple prototype (aluminum mold + 10-50 Teile). Costs rise to \(3,000-\)5,000 Für komplexe Designs (EDM machining, FEA testing, or final materials like PC).

Index
Scrollen Sie nach oben