Stanzen und Druckguss sind beides wesentliche Metallbearbeitungsprozesse, die auf Formen und Druck angewiesen sind – aber sie sind alles andere als austauschbar. Während gelegentliche Beobachter sie verwirren könnten (dank gemeinsamer Begriffe wie „Schimmel“ und „Druck“), ihre Grundprinzipien, Materielle Zustände, und Endprodukte sind grundsätzlich unterschiedlich. Für Hersteller, Eine Verwechslung kann zu kostspieligen Fehlern führen: Wählen Sie das Stanzen für ein komplexes 3D-Teil (worin sich Druckguss auszeichnet) oder Druckguss für einen dünnen Flachbildschirm (wo das Stempeln glänzt) verschwendet Zeit, Geld, und Ressourcen. Aber was genau unterscheidet sie? Wie unterscheiden sich ihre Arbeitsabläufe?? And how do you choose the right one for your project? This article answers these questions with side-by-side comparisons, technical details, und Beispiele in realer Welt.
1. Core Distinction: Material State & Molding Principle
The biggest divide between stamping and die casting lies in how they handle metal—one works with solid metal, the other with liquid. This single difference shapes every other aspect of the processes.
A. Stempeln: Solid-State Plastic Deformation
Stamping is a “cold working” process (no melting required) that transforms solid metal sheets/plates (Z.B., Stahl, Aluminium) into desired shapes via mechanical force.
- Material Input: Solid metal blanks (Dicke: 0.1–10mm for most applications; Z.B., 1mm aluminum sheets for phone casings).
- Kernprinzip: Uses the Plastische Verformung of solid metal. A press applies pressure (10–1000MPa) via a stamping die (punch + sterben), Biegen, Dehnung, or cutting the metal without changing its volume.
- Schlüsselmerkmal: No phase change (metal stays solid throughout); the final part’s density matches the raw material (≥99.5% density).
B. Sterben: Liquid Filling & Erstarrung
Die casting is a “hot working” process that melts metal into a liquid, then shapes it in a mold.
- Material Input: Geschmolzenes Metall (Z.B., aluminum alloy heated to 680–720°C, zinc alloy to 380–420°C).
- Kernprinzip: Verlässt sich auf fluid dynamics and solidification. Hochdruck (5–150MPa) injects liquid metal into a closed mold cavity; the metal cools and solidifies into the mold’s shape.
- Schlüsselmerkmal: Involves phase change (liquid → solid); the process requires precise control of temperature and flow to avoid defects like pores or shrinkage.
2. Nebenseite Vergleich: Verfahren, Ausrüstung & Produkte
To fully understand the gap between stamping and die casting, Lassen Sie uns ihre Arbeitsabläufe aufschlüsseln, Werkzeuge, and end products in a detailed table:
Vergleichsfaktor | Stempeln | Sterben |
Material Form | Solid metal sheets/plates (Stahl, Aluminium, Kupfer) | Liquid metal alloys (Aluminium, Zink, Magnesium) |
Molding Die Design | Simple two-part molds (punch + sterben); focuses on guidance and discharge (Z.B., ejector pins for sheet removal). No need for temperature control. | Complex molds with runner systems (to guide liquid metal), exhaust grooves (to release gas), und Kühlkanäle (um die Erstarrung zu kontrollieren). Requires heat-resistant materials (Z.B., H13 Stahl). |
Schlüsselausrüstung | Mechanical/hydraulic press (Klemmkraft: 10–2000 Tonnen); no integrated heating. | Die casting machine (includes melting furnace, Einspritzsystem, and mold temperature controller); Klemmkraft: 50–4000 tons. |
Prozessschritte | 1. Cut metal into blanks.2. Load blank into press.3. Apply pressure to deform metal.4. Eject finished part (no cooling step needed). | 1. Melt metal in a furnace.2. Inject liquid metal into mold under pressure.3. Cool metal to solidify.4. Open mold and eject part.5. Überschüssiges Material (Z.B., runner residues). |
Zykluszeit | Schnell (0.5–5 seconds/part for high-volume parts like beverage cans). | Mäßig (15–60 Sekunden/Teil; longer for thick-walled parts due to cooling time). |
Produkteigenschaften | – Dünnwandig, flat or shallow 3D shapes (max depth: 5× material thickness).- Gleichmäßige Dicke (Toleranz ± 0,05 mm).- Dense structure (no pores); ideal for plating/painting. | – Komplexe 3D -Formen (tiefe Hohlräume, internal threads, dünne Wände auf 0,5 mm).- Variable thickness (can have thick ribs for strength).- May have micro-porosity (fixed via vacuum casting or heat treatment). |
3. Anwendungsszenarien: Which Process Fits Which Part?
Stamping and die casting serve entirely different product needs. The table below maps each process to its ideal use cases, mit realen Beispielen:
Industrie | Ideal for Stamping | Ideal for Die Casting |
Automobil | – Körpertafeln (Türen, Kapuzen, Kotflügel)- Fuel tank caps- Bremsbeläge (steel backing plates) | – Engine blocks and cylinder heads- Übertragungsgehäuse- EV battery pack frames (complex 3D structures) |
Unterhaltungselektronik | – Phone/tablet back covers (Wohnung, thin aluminum sheets)- Laptop keyboard frames- TV mounting brackets | – 5G router housings (with internal ribs)- Headphone metal frames (intricate curves)- Elektrowerkzeughülsen (impact-resistant 3D shapes) |
Haushaltsgeräte | – Refrigerator door panels- Washing machine drum lids- Microwave oven outer shells | – Air conditioner compressor housings- Blender motor brackets (with integrated cooling channels)- Dishwasher spray arms (hohl, complex flow paths) |
Verpackung | – Aluminum beverage cans- Tin can lids- Metal food containers | – No—too simple for die casting; stamping is cheaper and faster. |
4. Common Misconceptions: Setting the Record Straight
Even experienced engineers sometimes mix up stamping and die casting. Below are three frequent myths and the facts to correct them:
Mythos 1: “Both use molds and pressure—so they’re similar processes.”
Tatsache: Pressure serves opposite purposes. In stamping, pressure bends/stretches solid metal (changing shape, not state). In die casting, pressure pushes liquid metal into mold cavities (filling space, then solidifying). The mold designs also differ drastically: stamping dies need no cooling or runner systems, while die casting dies rely on these to avoid defects.
Mythos 2: “Stamping can make complex 3D parts like die casting.”
Tatsache: Stamping is limited to shallow 3D shapes. Zum Beispiel, a stamping press can make a phone back cover (Tiefe: 10mm, Dicke: 1mm), but it cannot make a phone’s middle frame (with internal slots, Themen, and varying thicknesses)—that requires die casting. Stamping also needs multiple passes (Z.B., 3–5 steps for a deep-drawn cup), while die casting makes complex parts in one cycle.
Mythos 3: “Die casting parts are weaker than stamped parts.”
Tatsache: Es hängt von der Anwendung ab. Stamped parts have dense, uniform structures (great for flat, load-bearing parts like brake pads). But die casting parts can be reinforced with thick ribs or internal supports (Z.B., automotive steering knuckles) that stamped parts can’t match. With modern techniques like semi-solid die casting, die casting parts can reach tensile strengths of 300MPa—on par with stamped steel.
5. How to Choose Between Stamping and Die Casting
Follow this 3-step framework to pick the right process for your project:
Schritt 1: Analyze Part Geometry
- Wählen Stempeln Wenn: The part is flat, dünn (≤ 5 mm), or has shallow depth (depth ≤5× thickness). Beispiele: Panels, Klammern, Deckel.
- Wählen sterben Wenn: The part has complex 3D features (tiefe Hohlräume, internal threads, Rippen) or variable thickness. Beispiele: Gehäuse, Motorkomponenten, Strukturrahmen.
Schritt 2: Evaluate Production Volume
- Hochvolumen (>1 million parts/year): Stamping is cheaper and faster (Z.B., Getränkedosen).
- Medium volume (10,000–100,000 parts/year): Die casting is feasible (mold costs are spread over more parts).
- Low volume (<10,000 Teile/Jahr): Stamping may be better (lower mold costs than die casting).
Schritt 3: Check Material & Leistungsbedürfnisse
- Material: Stamping works with steel, Aluminium, Kupfer, and even plastics. Die casting is limited to non-ferrous alloys (Aluminium, Zink, Magnesium).
- Leistung: Need corrosion resistance or plating? Stamping’s dense surface is better. Need impact resistance for a 3D part? Die casting’s ribbed design excels.
6. Yigu Technology’s Perspective on Stamping vs. Sterben
Bei Yigu Technology, we see stamping and die casting as complementary tools—each solving unique manufacturing challenges. For clients needing high-volume flat parts (Z.B., Kfz -Körpertafeln), our automated stamping lines (with 1000-ton presses) achieve cycle times of 1.2 seconds/part and 99.8% Ertrag. For clients requiring complex 3D parts (Z.B., EV -Batteriegehäuse), our die casting solutions (600-ton machines + vacuum systems) reduce porosity to <0.5% and meet IP68 waterproof standards.
We’re optimizing both processes: 1) Adding AI to stamping presses to adjust pressure in real time (reducing material waste by 12%); 2) Developing modular die casting molds that cut tooling costs by 30% for small-batch runs. Our goal is to help clients avoid “one-size-fits-all” choices—matching each part to the process that delivers the best quality, Geschwindigkeit, und Kosten.
FAQ
- Can a part be made with both stamping and die casting?
Yes—hybrid designs are common. Zum Beispiel, an automotive EV battery pack may use die casting for the complex 3D frame (to hold cells) and stamping for the flat top cover (to seal the pack). This combines die casting’s shape flexibility with stamping’s cost efficiency for flat parts.
- Which process has lower mold costs: stamping or die casting?
Stamping molds are cheaper. A simple stamping die for a flat bracket costs \(5,000- )15,000, while a die casting mold for a complex housing costs \(20,000- )50,000. Jedoch, die casting molds last longer (50,000–100,000 shots vs. 30,000–50,000 for stamping dies), so die casting becomes cheaper for high-volume parts.
- Is die casting better than stamping for lightweight parts?
Die casting is often better for lightweight 3D parts. Zum Beispiel, a die-cast aluminum EV battery frame weighs 20–30% less than a stamped steel frame (since die casting can add thin ribs for strength instead of using thick solid metal). Stamping is better for lightweight flat parts (Z.B., thin aluminum phone covers), but it can’t match die casting’s weight savings for complex structures.