Spritzguss vs. 3D Druckprozess: Welches ist das Richtige für Sie??

Schnelle Vorlaufzeit für Prototypen

Wenn es um die Herstellung von Kunststoffteilen geht – sei es für Prototypen, kleine Chargen, oder Massenproduktion – zwei Prozesse dominieren: Spritzguss und 3D-Druck. Beim Spritzgießen werden Formen verwendet, um geschmolzenen Kunststoff in Formen zu gießen, Beim 3D-Druck werden Teile Schicht für Schicht aus Filamenten oder Harz aufgebaut. Beide haben Stärken, Aber die falsche Wahl kann Zeit verschwenden, Geld, oder […]

Wenn es um die Herstellung von Kunststoffteilen geht – sei es für Prototypen, kleine Chargen, oder Massenproduktion – zwei Prozesse dominieren: Spritzguss Und 3D Drucken. Beim Spritzgießen werden Formen verwendet, um geschmolzenen Kunststoff in Formen zu gießen, Beim 3D-Druck werden Teile Schicht für Schicht aus Filamenten oder Harz aufgebaut. Beide haben Stärken, Aber die falsche Wahl kann Zeit verschwenden, Geld, or ruin your project. This guide breaks down their differences, explains when to use each, teilt Beispiele aus der Praxis, and helps you make an informed decision.

Erste: What Are Injection Molding and 3D Printing? (Core Principles)

To compare them, you need to understand how each process works—their basic steps explain why they excel at different tasks.

Spritzguss: Mold-Based, Großserienproduktion

Injection Molding is a “mold-and-pour” process, ideal for making hundreds or thousands of identical parts. Here’s how it works in 5 simple steps:

  1. Make the Mold: A mold (usually aluminum or tool steel) is machined to match the part’s shape—this is the most time-consuming and costly step (molds can take 10–20 days to make).
  2. Melt the Plastic: Thermoplastic pellets (z.B., ABS, PC, Nylon) are heated to 200–300°C until they melt into a liquid.
  3. Inject into the Mold: The molten plastic is forced into the mold under high pressure (10–100 MPa) to fill every detail.
  4. Cool and Harden: The plastic cools inside the mold (usually 1–5 minutes) and hardens into the part’s shape.
  5. Remove and Finish: Die Form öffnet sich, the part is removed, and any excess plastic (called “flash”) is trimmed off.

Schlüsselmerkmal: Relies on molds—great for high volume, but expensive to set up for small batches.

3D Drucken: Layer-Based, Low-Volume Flexibility

3D Drucken (Additive Fertigung) builds parts from the bottom up, no mold needed. The two most common 3D Printing processes for plastics are:

FDM (Modellierung der Schmelzablagerung) – Filament-Based

  1. A spool of thermoplastic filament (z.B., PLA, ABS) feeds into a heated nozzle.
  2. The nozzle melts the filament (180–260°C) and deposits it onto a build plate in thin layers (0.05–0.3 mm thick).
  3. Layers cool and bond together, and the build plate lowers to add the next layer—repeat until the part is done.

SLA (Stereolithographie) – Resin-Based

  1. A vat holds liquid resin (sensitive to UV light).
  2. A UV laser traces the part’s first layer onto the resin, curing it into a solid.
  3. The build plate lifts, fresh resin flows over the cured layer, and the laser repeats—layers stack until the part is complete.
  4. The part is rinsed to remove excess resin and cured again for strength.

Schlüsselmerkmal: No molds—perfect for small batches, Prototypen, or complex designs that molds can’t make.

Spritzguss vs. 3D Drucken: Key Comparison (Daten & Details)

The table below compares the two processes across 8 critical factors—cost, Geschwindigkeit, Designflexibilität, and more—using real-world data from manufacturers like Xometry and industry studies.

FaktorSpritzguss3D Drucken (FDM/SLA)
VorabkostenHoch (\(1,000–)100,000+ für Formen)Niedrig (\(150–)2,000 for desktop printers)
Per-Part CostNiedrig (\(0.10–)5 for high volume)Hoch (\(5–)50 für kleine Chargen)
Production Speed (1,000 Teile)Schnell (1–2 Tage)Langsam (1–2 Wochen)
Production Speed (10 Teile)Langsam (10–20 days for mold + 1 day for parts)Schnell (3–5 Tage)
Design ComplexityBeschränkt (molds can’t make lattices/hollow interiors easily)Hoch (can make complex shapes with no extra cost)
TeilstärkeStark (no layer lines—uniform plastic)Weaker (layer lines cause weak points; FDM is stronger than SLA)
OberflächenbeschaffenheitGlatt (no layer lines—ready to use)Rough (FDM has visible layers; SLA is smoother but needs rinsing)
MaterialoptionenWide (thermoplastics like ABS, PC, Nylon)Mäßig (FDM: PLA/ABS/PETG; SLA: Harze)
Batch Size Sweet Spot1,000+ Teile1–100 Teile
MaterialverschwendungNiedrig (uses only the plastic needed for the part)Mäßig (FDM: 10–20% waste from supports; SLA: 20–30% resin waste)

Real-World Cases: When to Choose Injection Molding vs. 3D Drucken

Numbers tell part of the story—but real projects show how these processes perform in practice. Hier sind 3 examples where the choice made a big difference.

Fall 1: Mass-Produced Phone Cases (Injection Molding Wins)

A consumer brand needed 10,000 plastic phone cases (ABS-Material) for a new product launch.

  • 3D Drucken (FDM) Option: Each case took 2 hours to print. 10,000 cases would take 20,000 Std. (833 Tage) und Kosten \(10 per case (\)100,000 gesamt). The cases had visible layer lines and needed sanding.
  • Injection Molding Option: The mold cost \(5,000 und nahm 15 days to make. Once the mold was ready, 10,000 cases were made in 1 day at \)1 per case ($10,000 gesamt). The cases were smooth, stark, and ready to ship.

Ergebnis: The brand chose Injection Molding—saved $85,000 and met their launch deadline.

Fall 2: Custom Dental Prototypes (3D Printing Wins)

A dental lab needed 5 custom crown prototypes (to test fit for patients) made from biocompatible material.

  • Injection Molding Option: A mold for 5 small crowns would cost \(2,000 and take 10 days to make. The prototypes would cost \)0.50 each, but the total ($2,002.50) was overkill for 5 Teile.
  • 3D Drucken (SLA) Option: Using biocompatible resin, the lab printed 5 crowns in 2 Tage. Each crown cost \(8, gesamt \)40. The prototypes had tight tolerance (±0,1 mm) and fit patients perfectly.

Ergebnis: The lab chose 3D Printing—saved $1,962.50 and got prototypes fast enough to treat patients on time.

Fall 3: Complex Drone Frame (3D Printing Wins)

Ein Startup gesucht 20 drone frames with a hollow lattice design (um Gewicht zu reduzieren) made from Nylon PA12.

  • Injection Molding Option: A mold for the lattice design was impossible—molds can’t create internal hollow structures without extra parts. Even if a mold was made, it would cost $10,000 and take 20 Tage.
  • 3D Drucken (mjf) Option: The startup used MJF (a 3D Printing process for Nylon) zu drucken 20 frames in 3 Tage. Each frame cost \(30, gesamt \)600. The lattice design reduced weight by 40%—critical for drone flight.

Ergebnis: The startup chose 3D Printing—avoided impossible mold costs and got the lightweight design they needed.

How to Choose Between Injection Molding and 3D Printing (Schritt für Schritt)

Follow these 4 steps to pick the right process—no guesswork needed.

Schritt 1: Define Your Batch Size

Batch size is the biggest factor—here’s the rule of thumb:

  • 1–100 Teile: Choose 3D Printing (keine Formkosten, fast setup).
  • 100–1.000 Teile: Choose 3D Printing (MJF/SLS) or Injection Molding—calculate total cost (Schimmel + Teile vs. 3D Printing per-part cost).
  • 1,000+ Teile: Choose Injection Molding (mold costs are spread over many parts, per-part cost is low).

Beispiel: 500 Teile: Spritzguss (Schimmel \(3,000 + \)1 per part = \(3,500) vs. 3D Drucken (mjf: \)5 per part = $2,500). 3D Printing is cheaper here.

Schritt 2: Check Your Design Complexity

  • Einfach, uniform shapes (z.B., Handyhüllen, Tassen): Injection Molding works.
  • Komplexe Formen (Gitter, hohle Innenräume, organic curves): 3D Printing is the only option—molds can’t make these.

Pro Tip: If your design has undercuts (parts that stick out and block mold removal), Injection Molding needs expensive “complex molds.” 3D Printing handles undercuts for free.

Schritt 3: Prioritize Strength and Surface Finish

  • Need strong, glatte Teile (z.B., Motorkomponenten, medizinische Geräte): Injection Molding—parts have no layer lines and uniform strength.
  • Strength is less critical (z.B., Prototypen, display models): 3D Drucken (FDM for functional parts, SLA for smooth details).

Schritt 4: Calculate Total Cost (Upfront + Per-Part)

Total cost = upfront cost + (per-part cost × number of parts). Use this to compare:

Batch SizeInjection Molding Total Cost3D Drucken (FDM) Total Cost
10 Teile\(5,000 (Schimmel) + \)5 (Teile) = $5,005\(50 (Teile) = \)50
100 Teile\(5,000 (Schimmel) + \)50 (Teile) = $5,050\(500 (Teile) = \)500
1,000 Teile\(5,000 (Schimmel) + \)500 (Teile) = $5,500\(5,000 (Teile) = \)5,000
5,000 Teile\(5,000 (Schimmel) + \)2,500 (Teile) = $7,500\(25,000 (Teile) = \)25,000

Key Takeaway: Injection Molding becomes cheaper than 3D Printing at around 1,000 parts for most projects.

Yigu Technology’s Perspective on Injection Molding vs. 3D Drucken

Bei Yigu Technology, we don’t pick sides—we pick what fits your project. For clients needing mass production (1,000+ Teile) like consumer goods or automotive components, we recommend Injection Molding for its low per-part cost and strong parts. For startups prototyping complex designs or small batches (1–100 Teile) like medical guides or drone frames, 3D Drucken (FDM/MJF) is faster and more cost-effective. We also help with hybrid approaches: use 3D Printing for prototypes to test designs, then switch to Injection Molding for production. Our team provides cost quotes and sample parts for both processes, so you’re never guessing. The best process is the one that meets your budget, Zeitleiste, and part needs.

FAQ About Injection Molding vs. 3D Drucken

1. Can 3D Printing replace Injection Molding for mass production?

No—3D Printing is too slow and expensive for large batches (1,000+ Teile). Injection Molding’s per-part cost is 10–100x lower, and it can make parts 50x faster. 3D Printing is great for prototypes or small batches, but Injection Molding is still the best for mass production.

2. Is Injection Molding worth it for small batches (unter 100 Teile)?

Rarely—unless you need ultra-strong, smooth parts and have a big budget. Für 100 Teile, Injection Molding’s mold cost (\(1,000–)5,000) will make your total cost 10–50x higher than 3D Printing. Only choose Injection Molding for small batches if no other process can meet your strength/finish needs.

3. Which process is better for complex designs (z.B., Gitter, Hohlteile)?

3D Printing is the only practical option. Injection Molding molds can’t create internal hollow structures or lattices without adding expensive, komplexe Funktionen (like sliding cores). 3D Printing builds parts layer by layer, so complex designs cost the same as simple ones—no extra setup needed.

Index
Scrollen Sie nach oben