So verbessern Sie die Oberflächenbeschaffenheit der CNC-Bearbeitung? Ein umfassender Leitfaden

CNC-Brennschneiden

Die Oberflächenbeschaffenheit ist eine entscheidende Messgröße für CNC-bearbeitete Teile, direkten Einfluss auf die Funktionalität, Ästhetik, und Leistung – insbesondere in Branchen wie der Luft- und Raumfahrt, medizinische Geräte, und Automobil. In diesem Artikel werden umsetzbare Strategien zur Verbesserung der Oberflächengüte bei der CNC-Bearbeitung beschrieben, anhand klarer Vergleiche, datengesteuerte Erkenntnisse, und praktische Lösungen. 1. Erste: Verstehen Sie die Bewertungsmetriken für die Oberflächenbeschaffenheit, bevor Sie die Oberflächenbeschaffenheit verbessern, Du […]

Die Oberflächenbeschaffenheit ist eine entscheidende Messgröße für CNC-bearbeitete Teile, direkten Einfluss auf die Funktionalität, Ästhetik, und Leistung – insbesondere in Branchen wie der Luft- und Raumfahrt, medizinische Geräte, und Automobil. This article breaks down actionable strategies to enhance CNC machining surface finish, anhand klarer Vergleiche, datengesteuerte Erkenntnisse, und praktische Lösungen.

1. Erste: Understand Surface Finish Evaluation Metrics

Before improving surface finish, you need to measure it accurately. The table below compares the most common evaluation indicators, their definitions, und Anwendungsfälle:

IndicatorDefinitionHauptmerkmalIdeal Use Case
Ra-WertArithmetic average of surface microscopic undulations (in μm)Most widely used; simple to measureGeneral CNC parts (drehen, Mahlen)
N-level StandardISO grading system (N1 to N12)Smaller number = higher finishInternational quality compliance
Rz ValueTen-point height of roughness (peak-to-valley average)Reflects extreme surface irregularitiesParts with strict wear resistance requirements
Grit SizeMeasure of sanding/polishing particle finenessLarger grit number = finer surfacePost-machining polishing (z.B., Aluminiumlegierungen)

2. Core Factors That Harm CNC Surface Finish: A Contrast

Poor surface finish often stems from mismanagement of key variables. Below is a contrast between detrimental practices Und optimal controls for critical factors:

FaktorDetrimental Practices (Causes Roughness)Optimal Controls (Boosts Smoothness)
Tool ConditionsDull edges, low-wear materials (z.B., HSS), no coatingUltra-fine grain carbide oder PCD (polykristalliner Diamant) Werkzeuge; TiAlN-coated edges
SchnittparameterLow spindle speed, high feed rate, deep cutting depthHigh speed (reduces tool mark spacing), low feed (0.05–0.1 mm/rev), shallow depth (0.1–0,3 mm)
Material PrepUnprocessed alloys (internal stress), soft metals (Grate)Behandlung zum Stressabbau (für dünnwandige Teile); pre-machining deburring (for aluminum alloys)
Cooling/LubricationInsufficient coolant, external cooling only (für tiefe Löcher)Kombiniert high-pressure internal cooling + external cooling; coolant matched to material (z.B., mineral oil for steel)
Machine/Fixture StabilityLoose clamps, low-rigidity CNC machinesHigh-precision 5-axis linkage machines; rigid clamp designs (avoids vibration-induced ripples)

3. Step-by-Step Strategies to Improve Surface Finish

Follow this linear, actionable process to achieve consistent, high-quality surface finish:

Schritt 1: Optimize Tools and Cutting Parameters

  • Verwenden imported PCD tools for non-ferrous metals (z.B., Aluminium) to avoid sticking and burrs.
  • Apply a “hohe Geschwindigkeit, low-feedfinishing strategy: For steel parts, set spindle speed to 3,000–6,000 RPM, feed rate to 0.08 mm/rev, and cutting depth to 0.2 mm.
  • Conduct 2–3 trimming passes to eliminate residual tool marks from rough machining.

Schritt 2: Enhance Cooling and Chip Evacuation

  • For deep-hole machining (z.B., boreholes >10x diameter), verwenden high-pressure internal cooling (30–50 bar) to direct coolant to the cutting zone—this reduces heat and washes away chips immediately.
  • Choose water-soluble coolant for aluminum (prevents oxidation) and mineral oil for stainless steel (reduziert die Reibung).

Schritt 3: Upgrade Equipment and Processes

  • Replace old 3-axis machines with 5-axis linkage CNC equipment for complex surfaces (z.B., Turbinenschaufeln)—it minimizes re-clamping errors and vibration.
  • Adopt turn-mill composite machining for parts with multiple features (z.B., shafts with threads and slots)—completing all operations in one clamping avoids surface scratches from repositioning.

Schritt 4: Implement Quality Control and Post-Processing

  • Establish a full-chain quality check: Zum Beispiel, conduct IPQC (In-Process Quality Control) inspections every 2 Std. (as used by Wemet factory) Abweichungen frühzeitig erkennen.
  • Add post-processing steps:
  • Test oxidation before anodizing to solvematerial flowering” (uneven color) in aluminum parts.
  • Verwenden blister packaging for transportation to preventthree injuries”: abrasions, bruises, and hanging injuries.

4. Typical CNC Machining Methods: Finish Ranges and Improvement Tips

Different CNC processes yield varying baseline surface finishes. Use this table to set targets and identify improvement opportunities:

Machining MethodBaseline Ra Range (μm)Improvement Tip
Ordinary Turning1.6–0.8Upgrade to mirror turning (use finely ground PCD tools) for Ra 0.04–0.01 μm
Rough Milling20–5Switch to fine milling with carbide tools for Ra 6–0.63 μm
Fine Boring (Stahl)0.63–0.08Add a final honing pass to reach Ra <0.04 μm
Ultra-Precision Grinding0.04–0.01Use mirror grinding (Diamantschleifmittel) for Ra <0.01 μm

Die Perspektive von Yigu Technology

Bei Yigu Technology, we believe improving CNC surface finish is not just about optimizing single factors—it’s about integrating tool selection, Prozesskontrolle, and quality management into a seamless workflow. Our clients in the medical and automotive sectors often require Ra values below 0.1 μm; to meet this, we combine 5-axis CNC machines with custom PCD tools and real-time coolant monitoring. Zusätzlich, we’ve developed a post-processing oxidation test that reducesmaterial floweringrates by 90%, ensuring consistent aesthetics. Für Hersteller, investing in these integrated solutions not only boosts surface finish but also cuts rework costs by up to 30%.

FAQ

  1. What is the minimum Ra value achievable with CNC machining?

With ultra-precision processes like mirror turning or mirror grinding, Ra values as low as 0.01 μm can be achieved—suitable for high-end optical or medical parts.

  1. Can soft materials like aluminum achieve the same surface finish as steel?

Ja, but aluminum requires extra steps: Use PCD tools to avoid burrs, apply high-pressure cooling, and conduct post-machining polishing. Aluminum can reach Ra 0.04 μm, comparable to fine-turned steel.

  1. How does machine rigidity affect surface finish?

Low-rigidity machines cause vibration between the tool and workpiece, leading to ripples or deep tool marks. High-rigidity 5-axis machines suppress this vibration, ensuring Ra values stay consistent across the entire part—critical for complex geometries.

Index
Scrollen Sie nach oben