1. Vor-CNC-Bearbeitung: Design and Preparation for Surveillance Camera Prototypes
Vor dem Start CNC -Bearbeitung for the surveillance camera prototype, Eine systematische Konstruktions- und Vorbereitungsphase ist wichtig, um die Funktionen zu erfüllen, strukturell, and practical requirements. Diese Phase folgt einer linearen Sequenz, mit Schlüsseldetails in der folgenden Tabelle organisiert.
Designschritt | Schlüsselanforderungen | Empfohlene Materialien |
Produktbedarfsanalyse | Kernfunktionen: High-definition lens compatibility (1080P/4K), 360° pan/tilt rotation (horizontal rotation speed 10°/s, vertical rotation range -15° to 90°), night vision (infrared LED range 10-30m); Strukturelle Anforderungen: Wetterwiderstand (IP66/IP67), anti-vibration (Für den Außengebrauch), reserved space for circuit board, Batterie (Wenn drahtlos), and network interface; Aussehen: Compact size (Z.B., dome camera: diameter 100-150mm, height 80-120mm), low wind resistance design. | – |
Strukturelles Design | Interne Struktur: Lens mounting bracket (coaxiality tolerance ≤0.05mm), motor fixing slots (for pan/tilt rotation), Leiterplattenhöhle (with heat dissipation ribs), infrared LED mounting holes; Externe Struktur: Waterproof sealing grooves (width 2-3mm, depth 1-2mm) at dome and base joints, anti-theft mounting holes (Durchmesser 6-8mm) on the base, Löcher der Wärmeissipation (Φ1-2mm, spacing 5mm) on the side. | – |
3D Modellierung & Simulation | Verwenden Sie die CAD -Software (Solidworks, Und NX) to create 3D models of split components (dome cover, camera body, Base); Mark key dimensions: Lens hole diameter (matches lens outer diameter, Lücke 0,1 mm), motor shaft hole (Φ8-10mm), battery compartment size (für 18650 lithium battery); Use simulation software to test structural strength (withstand wind load 10m/s without deformation) and heat dissipation (circuit board temperature ≤60°C under continuous operation). | – |
Materialauswahl | Wählen Sie Materialien basierend auf der Funktion des Teils aus, Umweltanpassungsfähigkeit, und Verwirrbarkeit, Dabei steht die Kompatibilität mit Massenproduktionsprozessen im Vordergrund. | Dome Cover: PC -Kunststoff (hohe Transparenz, wirkungsbeständig, Dicke 2-3 mm); Camera Body: Aluminiumlegierung 6061/6063 (Gute Wärmeissipation, korrosionsbeständig, wall thickness 1.5-2mm) or ABS/PC alloy (niedrige Kosten, leicht); Base: Aluminiumlegierung (Hochleistungs, anti-theft) or galvanized steel (for outdoor fixed installation); Internal Bracket: PA66 nylon (insulated, Tragenresistent) or aluminum alloy (for lens/motor support). |
Materielle Vorbehandlung | Rohstoffe in Lücken schneiden (Lassen Sie die Bearbeitungszulage von 0,5-1 mm): Aluminiumlegierung über eine Bandsäge, PC/ABS via laser cutting; Anneal Aluminiumlegierung (300-350° C für 1-2 Std.) Inneren Stress reduzieren; Dry PC plastic (80-100° C für 2-3 Std.) to remove moisture and prevent machining bubbles. | – |
2. CNC Machining Preparation for Surveillance Camera Prototypes
Adequate preparation before formal machining is the key to ensuring the efficiency and quality of CNC -Bearbeitung for surveillance camera prototypes. This section mainly covers material and tool selection, as well as programming and fixture design.
2.1 Material- und Werkzeugauswahl
The choice of materials and tools directly affects machining efficiency and prototype quality. Die folgende Tabelle enthält detaillierte Empfehlungen:
Kategorie | Spezifische Optionen | Anwendungsszenarien |
Gehäusematerialien | Aluminiumlegierung 6061 Platte (Dicke 3-5 mm), PC plastic plate (Dicke 2-3 mm) | Aluminum alloy for camera body (Gute Wärmeissipation); PC for dome cover (hohe Transparenz). |
Metal Parts Materials | Galvanized steel plate (thickness 4-6mm) | Used for heavy-duty camera bases (anti-theft, korrosionsbeständig). |
Grobe Bearbeitungswerkzeuge | Φ10-12mm flat bottom knife, Φ8mm ox nose knife | Realize quick material removal for large-size parts (Z.B., camera body, Base). |
Finishing -Werkzeuge | Φ2-3mm ball head knife, Φ1-2mm Drillbit | Used for machining curved surfaces (dome cover edge) und kleine Löcher (infrared LED mounting holes), ensuring surface smoothness. |
Special Process Tools | Thread tap (M6-M8 for base mounting holes), Laserstecher (brand logo) | Process threaded holes for installation and engrave decorative/functional patterns. |
2.2 Programmierung und Vorrichtungsdesign
Durch wissenschaftliche Programmierung und vernünftiges Vorrichtungsdesign können Bearbeitungsfehler wirksam vermieden und die Bearbeitungsgenauigkeit sichergestellt werden.
Link | Schlüsselvorgänge | Zweck & Wirkung |
Cam -Programmierung | – Subzonenbearbeitung: First process the outer shape of large parts (camera body, Base), then machine internal cavities (Leiterplattenhöhle, Batteriefach) Störungen zu vermeiden.- Layered Schneiden: Set roughing layer thickness 1mm, Deckschichtdicke 0,2 mm; Für gekrümmte Oberflächen (dome cover), use multi-axis linkage machining to ensure curvature consistency. | Verbessern Sie die Bearbeitungseffizienz, ensure the precision of complex structures, and reduce tool wear. |
Vorrichtungsdesign | – For aluminum alloy plates: Use a precision vise with soft jaws (prevent surface scratches) for clamping; For large-size bases, use a multi-point support fixture to avoid deformation.- For PC plastic dome covers: Use a vacuum adsorption platform for fixation to ensure uniform stress and prevent cracking. | Prevent part displacement during machining, ensure the flatness and dimensional accuracy of the prototype. |
3. Core CNC Machining Process for Surveillance Camera Prototypes
Das Formale CNC-Bearbeitungsprozess is the core link in transforming design models into physical surveillance camera prototype parts. It needs to be carried out in strict accordance with the process steps to ensure the precision and functionality of the prototype.
3.1 Hauptkomponentenbearbeitung
Different components have different machining requirements, and the table below details the key steps for machining main parts:
Komponente | Schruppschritte | Abschlussschritte |
Camera Body (Aluminiumlegierung) | 1. Mill the outer cylindrical shape (diameter matches design size, 0,5 mm Spielraum einhalten);2. Drill infrared LED mounting holes (Array -Layout, Φ2mm);3. Mill the circuit board cavity (depth 15-20mm, size matches circuit board). | 1. Polish the outer surface (Ra1,6-Ra3,2) Korrosionsresistenz verbessern;2. Machine waterproof sealing grooves (width 2mm, depth 1.5mm) at the top joint with the dome cover;3. Tap M6 threaded holes at the bottom for base connection (depth 8-10mm). |
Dome Cover (PC -Kunststoff) | 1. Mill the hemispherical shape (radius matches design size, 0,3 mm Spielraum einhalten);2. Cut the edge to ensure the matching size with the camera body. | 1. Polish the inner and outer surfaces (Ra3.2) to improve transparency (Lichtübertragung ≥ 90%);2. Chamfer the edge (C0,5mm) to avoid sharp edges scratching the operator. |
Base (Verzinkter Stahl) | 1. Mill the square/round base shape (size matches design, retain 0.8mm allowance);2. Drill anti-theft mounting holes (Φ8mm, 4-6 holes evenly distributed). | 1. Deburr the mounting holes to ensure smooth screw installation;2. Perform galvanizing treatment (Dicke 5-10μm) to enhance outdoor corrosion resistance. |
3.2 Wichtige Detailbearbeitung
Key detail machining directly affects the functionality and reliability of the surveillance camera prototype:
- Lens Mounting Bracket Machining: Use aluminum alloy to machine the bracket with a coaxial hole (Φ20-25mm, Toleranz ± 0,02 mm) for lens installation. Ensure the bracket is perpendicular to the camera body (90°±0.1°) to avoid lens deviation affecting shooting accuracy. Add positioning pins (Φ3mm) to fix the lens and prevent rotation.
- Motor Shaft Hole Machining: For pan/tilt rotation motors, machine a shaft hole (Φ8mm, tolerance ±0.01mm) with a keyway (width 2mm, depth 1mm) to ensure the motor shaft and rotating component are tightly connected. Nach der Bearbeitung, test the rotation flexibility (no stuck phenomenon, rotation resistance ≤0.5N·m).
- Heat Dissipation Structure Machining: On the camera body side, machine heat dissipation ribs (height 3-5mm, spacing 4mm) and array small holes (Φ1.5mm) to enhance heat exchange. For high-power circuit boards, mill a heat dissipation platform (area ≥50cm²) to install heat sinks.
3.3 Prüfung der Bearbeitungsqualität
Conduct in-process inspection during machining to ensure product quality:
- Dimensionale Inspektion: Use a digital caliper to measure the outer diameter, Lochdurchmesser, and cavity depth of parts (Toleranz ± 0,05 mm); Verwenden Sie eine Koordinatenmessmaschine (CMM) to test the coaxiality of the lens bracket and motor shaft hole (error ≤0.03mm).
- Surface Quality Check: Use a surface roughness meter to verify the surface finish of key parts (Ra ≤3.2μm for visible parts, Ra ≤6.3μm for internal parts); Überprüfen Sie auf Kratzer, Burrs, and other defects on the part surface (no scratches >0.5mm).
- Structural Fit Test: Test-fit the machined camera body, dome cover, and base (gap ≤0.1mm at joints); Install the lens and motor to check if they fit into the reserved positions (no interference).
4. Post-Processing and Assembly of Surveillance Camera Prototypes
Nach CNC -Bearbeitung, post-processing and assembly are required to make the prototype have better performance and complete functionality.
4.1 Oberflächenbehandlung
Different materials require targeted surface treatment to improve the prototype’s performance and appearance:
Material | Oberflächenbehandlungsmethode | Zweck & Wirkung |
Aluminum Alloy Camera Body | Eloxierung (schwarz/silber) + Sandstrahlen | Anodization enhances corrosion resistance (salt spray test ≥72 hours); Sandblasting creates a matte texture (reduces light reflection and avoids affecting shooting). |
PC Dome Cover | Anti-scratch Coating Spraying | The coating (Dicke 5-10μm) improves scratch resistance (no scratches after 500 steel wool friction tests) and maintains high transparency. |
Galvanized Steel Base | Pulverbeschichtung | The coating (thickness 60-80μm) enhances outdoor weather resistance (resists UV radiation and rain erosion) and improves aesthetics. |
Internal Plastic Brackets | Flame Retardant Coating | Meet flame retardant standards (Ul94 v-0) to prevent circuit short circuits from causing fires. |
4.2 Assembly and Test
Scientific assembly and strict testing ensure that the surveillance camera prototype meets design requirements and can work normally in actual scenarios.
4.2.1 Montageprozess
Follow this step-by-step sequence to avoid assembly errors:
- Kontrolle vor der Montage: Inspect the size and surface quality of all machined parts (no dimensional deviations, no surface defects); Prepare auxiliary materials (silicone gaskets for waterproofing, Schrauben, Kabel).
- Component Installation:
- Install the circuit board in the camera body cavity: Fix it with M2 screws (torque 0.8-1N·m), and connect the lens, Motor, and infrared LED wires to the circuit board (ensure correct polarity, no short circuits).
- Assemble the pan/tilt motor: Fix the motor to the internal bracket, align the motor shaft with the shaft hole, and install the rotating component (test rotation flexibility).
- Install the dome cover: Place a silicone gasket in the waterproof groove of the camera body, cover the dome cover, and fasten it with M3 screws (even force, Keine Lücken).
- Fix the base: Connect the camera body to the base with M6 screws (torque 2-2.5N·m), and install anti-theft bolts if needed.
- Final Assembly Check: Nach der Versammlung, check for loose parts (no rattling during shaking); Verify that the lens can rotate 360° horizontally and adjust the vertical angle freely.
4.2.2 Test Procedures
Conduct comprehensive tests to verify the performance and reliability of the prototype:
- Funktionstests:
- Image Quality Test: Connect the camera to a monitor, test 1080P/4K resolution (no blurring, color distortion ≤5%), and night vision effect (clear imaging within 10-30m in dark environments).
- Rotationstest: Test horizontal pan (360° continuous rotation, no stuck, speed error ≤1°/s) and vertical tilt (range -15° to 90°, smooth adjustment).
- Network Test: For network cameras, test data transmission speed (≥10Mbps) and remote access (no delay, stable connection).
- Environmental Adaptability Test:
- Wasserdichtigkeitstest: Conduct IP66/IP67 test (spray water at 100L/min for 3 minutes or immerse in 1m water for 30 Minuten, no water ingress).
- High/Low Temperature Test: Place the prototype in a -30°C to 60°C environment for 24 Std., Testfunktionalität (Kein Versagen, normal operation).
- Vibration Test: Apply 10-500Hz vibration (acceleration 10m/s²) für 2 Std., check for component loosening or structural damage.
- Safety Test:
- Insulation Test: Check the insulation resistance between the circuit and the housing (≥100MΩ) to prevent electric leakage.
- Anti-theft Test: Test the base mounting strength (withstand 500N pull force, no deformation or disassembly).
5. Application Scenarios of CNC Machined Surveillance Camera Prototypes
CNC machined surveillance camera prototypes have a wide range of application scenarios, providing strong support for product development and market promotion:
Anwendungsszenario | Specific Uses | Advantage of CNC Machining |
Product Design Verification | Verify the feasibility of structural design (Z.B., wasserdicht, rotation mechanism) and functional design (Z.B., lens compatibility, night vision); Optimize the design based on test results (Z.B., adjust heat dissipation structure to reduce temperature). | CNC machining has high precision, which can accurately restore design details, helping designers find and solve problems in a timely manner. |
Market Research and Display | Display the prototype at security exhibitions to collect user feedback on appearance, Funktionalität, and installation convenience; Use the prototype for customer demonstrations to promote product orders. | The prototype has a complete structure and realistic appearance, which can intuitively show the product’s advantages and attract customer attention. |
Small-Batch Customization | For special scenarios (Z.B., high-altitude monitoring, underwater monitoring), customize prototypes with special structures (Z.B., enhanced waterproof, anti-icing); Produce ≤50 units without opening molds. | CNC machining is flexible, suitable for small-batch customization, and can quickly respond to personalized needs, Reduzierung der Entwicklungskosten. |
Educational and R&D Fields | Use the prototype as a teaching tool to demonstrate the structure and working principle of surveillance cameras; Provide experimental samples for R&D institutions to study new technologies (Z.B., AI recognition, intelligent tracking). | The prototype has clear internal structure and complete functions, which is convenient for disassembly, observation, and experimental research. |
6. Key Precautions for CNC Machining Surveillance Camera Prototypes
To ensure the quality and efficiency of CNC machining surveillance camera prototypes, the following key precautions must be observed:
- Präzisionskontrolle: Strictly control the coaxiality of the lens and motor (≤0.05mm) to avoid affecting shooting accuracy and rotation stability; The tolerance of waterproof grooves should be controlled at ±0.03mm to ensure the waterproof effect. Während der Bearbeitung, use a CMM to inspect key dimensions every 2 Std..
- Material Property Adaptation: When machining aluminum alloy, use cutting fluid to cool the tool and workpiece to prevent material hardening and deformation; When machining PC plastic, control the cutting speed (4000-6000Drehzahl) to avoid melting caused by excessive temperature.
- Kostenoptimierung: CNC machining is suitable for small-batch prototype production (≤100 units); Für die Massenproduktion (>1000 units), it is recommended to switch to injection molding (für Plastikteile) or die casting (für Metallteile) to reduce production costs. During the design stage, simplify complex structures (Z.B., replace irregular curved surfaces with regular ones) to reduce machining time.
- Safety Operation: Während der Bearbeitung, operators must wear safety glasses and gloves to avoid injury caused by flying chips; When performing surface treatment (Z.B., anodization, Pulverbeschichtung), use professional equipment and follow safety procedures to avoid toxic gas inhalation.