What Are the Heat Resistance Temperatures of Common 3D Printing Materials?

art 3d printing

When choosing a 3D Druckmaterial, heat resistance temperature is far more than a technical detail—it directly determines whether the final part can withstand real-world conditions, from daily use (Z.B., a PLA cup near a coffee maker) to industrial applications (Z.B., a PC component in a car engine bay). This article breaks down the key heat resistance metrics of 8 Gemeinsame Materialien, explains how to use this data, and solves common material-selection mistakes.

1. Core Heat Resistance Metrics: What Do They Actually Mean?

Vor dem Materialvergleich, it’s critical to understand the two most important heat-related terms—confusing them often leads to failed prints or unusable parts. Below is a simple breakdown using aquestion-and-answer” Struktur:

MetrischDefinitionPractical Significance
Wärmeverformungstemperatur (TDT)The temperature at which a material bends or deforms under a fixed load (normalerweise 1.82 MPa for 3D printing).This is thesafe upper limit” für die meisten Teile. If your part will be exposed to temperatures above its TDT (Z.B., a PLA phone stand near a 70°C laptop vent), it will warp or lose shape.
Vitrification Transition Temperature (Tg)For amorphous materials (Z.B., PLA), this is the temperature where the material softens from aglassystate to arubbery” Zustand (no melting, just flexibility).A PLA part with a Tg of 55–65°C will feel soft and bendable if left in a hot car (where interior temps can reach 60°C+), even if it doesn’t melt.
Schmelzpunkt / Complete Melting TemperatureThe temperature at which a crystalline material (Z.B., ABS, Pa) fully turns from solid to liquid.This is the minimum temperature your 3D printer’s nozzle needs to reach to print the material. It also tells you theabsolute failure point—exposing a printed part to this temperature will destroy it.
Long-Term Use TemperatureThe maximum temperature a material can withstand continuously (Z.B., 8 Stunden am Tag, 5 days a week) ohne sich zu verschlechtern.A PETG part with a long-term use temperature of ≤100°C is safe for a water bottle that holds 95°C hot water, but not for a part in a 110°C oven.

2. Heat Resistance Comparison of 8 Common 3D Printing Materials

The table below organizes the key heat data for 8 weit verbreitete Materialien, sortiert von der niedrigsten zur höchsten thermischen Verformungstemperatur (TDT) zum einfachen Vergleich. Alle Werte basieren auf Standard-3D-Druckqualitäten (keine industriell modifizierten Versionen).

MaterialWärmeverformungstemperatur (° C)Wichtige zusätzliche WärmemetrikenAm besten für (Basierend auf Hitzebeständigkeit)
PLAN / A (verwendet stattdessen Tg)Tg: 55–65°C; Erweichungstemperatur: 170–230 ° C.Anwendungen mit niedrigen Hitzel: Dekorative Modelle, unbeheizte Lebensmittelbehälter, oder Teile, die im Innenbereich verwendet werden (20–25 ° C.).
TPUN / A (elastisches Material)Thermische Zersetzungstemp: 200–250 ° C.; Langzeitgebrauchstemperatur: 80–100 ° C.Flexible Teile, die hohe Hitze vermeiden: Telefonkoffer, Schuheinlegesohlen, oder weiche Dichtungen (Nicht für die Verwendung in der Nähe von Heizgeräten geeignet).
Petg85–88°CLangzeitgebrauchstemperatur: ≤ 100 ° C.; Maximale Dauerbetriebstemperatur: 120–140 ° C.Mäßiger Wärmebedarf: Wasserflaschen (hält heiße Getränke), Lampenschirme (near 60–80°C bulbs), or 3D printer enclosures.
ABS70–105°CComplete melting temp: 210–250 ° C.Parts needing slight heat resistance: Spielzeugautos (exposed to sunlight), basic tool handles (no prolonged contact with hot surfaces).
Pp100–110 ° C.Langzeitgebrauchstemperatur: ≤ 100 ° C.Essenssicher, low-to-moderate heat parts: reusable containers (microwavable for short periods, <90° C) or outdoor planters (resists summer heat).
Acryl90–105°CErweichungstemperatur: 100–120 ° C.Transparent parts with mild heat resistance: Fälle anzeigen, clear model windows (not for use near stoves or heaters).
PC (Polycarbonat)135–145°CLong-term operating temp: -40 to 130°C; Thermische Zersetzungstemp: ≥300°CHigh-heat, langlebige Teile: Kfz -Innenkomponenten (near 120°C vents), LED -leichte Gehäuse, oder Industriemaschinenteile.
Pa (Nylon)≥220°C (Z.B., PA66: ~270°C)Schmelzpunkt: 210–230 ° C.Extreme-heat industrial applications: Motorraumkomponenten (withstands 180–200°C), high-temperature gaskets, or drone parts exposed to friction heat.

3. How to Choose the Right Material Based on Heat Needs: 3 Step-by-Step Scenarios

Heat resistance data is only useful if you apply it to your specific project. Unten sind 3 common real-world scenarios, each using a “lineare Erzählung” structure to guide material selection:

Szenario 1: A Reusable Food Container (Needs to Hold 95°C Hot Soup)

  1. Define the heat requirement: Continuous exposure to 95°C (Keine Verformung).
  2. Filter materials by key metric: Look for materials with a long-term use temperature ≥95°C oder TDT ≥95°C.
  • Eliminate PLA (Tg too low: 55–65°C) und abs (TDT max 105°C, but long-term use temp untested for food).
  1. Final choice: Petg (long-term use temp ≤100°C, food-safe grades available) oder pp (TDT 100–110°C, microwave-safe).

Szenario 2: A 3D Printer Enclosure Panel (Needs to Withstand 120°C Nozzle Heat)

  1. Define the heat requirement: Resist intermittent 120°C heat (from the printer’s nozzle) ohne sich zu verzieren.
  2. Filter materials by key metric: Priorisieren max continuous service temp ≥120°C oder TDT ≥120°C.
  • Eliminate PETG (max continuous temp 120–140°C, but TDT 85–88°C—risk of deformation under slight pressure).
  1. Final choice: PC (TDT 135–145°C, wirkungsbeständig) oder pa (TDT ≥220°C, aber teurer).

Szenario 3: A Decorative Desk Organizer (Only Exposed to 20–25°C Indoor Heat)

  1. Define the heat requirement: No special heat needs—focus on cost and printability.
  2. Filter materials by key metric: Any material with Tg/TDT above 25°C (all common materials qualify).
  3. Final choice: PLA (niedrige Kosten, einfach zu drucken, Kein beheiztes Bett benötigt) oder TPU (if you want a soft, flexible organizer).

4. Yigu Technology’s Perspective on Material Heat Resistance

Bei Yigu Technology, Wir haben gesehen 60% of client part failures stem from mismatched heat resistance—e.g., an automotive client once used ABS for a 110°C engine component (ABS’s max TDT is 105°C), leading to a production delay. To solve this, we integrate two tools into our workflow: 1) A material heat-resistance database (updated with 50+ Noten) to help clients select materials in 5 Minuten; 2) pre-print heat tests (Z.B., exposing sample parts to target temps for 24 Std.) Leistung zu überprüfen. Für Benutzer, understanding heat resistance isn’t just about specs—it’s about ensuring parts work as intended, Jedes Mal.

FAQ: Common Questions About 3D Printing Material Heat Resistance

  1. Q: Can I increase a material’s heat resistance after printing (Z.B., coating PLA)?

A: Ja, aber nur geringfügig. Zum Beispiel, applying a heat-resistant spray (Z.B., Krylon High Heat) can raise PLA’s Tg by 5–10°C, but it won’t make it match PETG. For high-heat needs, choose the right material from the start.

  1. Q: Why does my ABS part warp even though it’s below its TDT (70–105°C)?

A: ABS is sensitive to Temperaturänderungen, not just high temps. If one side of the part is near a cold window (20° C) and the other near a heater (30° C), the uneven expansion will cause warping—even at temps well below its TDT.

  1. Q: Ist “long-term use temperaturethe same asmax continuous service temperature”?

A: Almost—they refer to the same concept (sustained heat resistance). The only difference: “long-term use temperatureis often used for consumer parts (Z.B., PETG bottles), während “max continuous service temperatureis more common for industrial materials (Z.B., PC for car parts).

Index
Scrollen Sie nach oben