EN 13CrMo4-5 Pressure Vessel Steel: Ein vollständiger Leitfaden für Eigenschaften & Verwendung

Metallteile benutzerdefinierte Herstellung

If you’re tackling European projects that demand resistance to both high temperatures and corrosion—like coastal power plant boilers, offshore petrochemical reactors, or sour gas storage tanks—EN 13CrMo4-5 pressure vessel steel is your most reliable choice. As a chromium-molybdenum alloy steel in the EN 10028-2 Standard, it combines 0.70–1.10% chromium (für Korrosionsschutz) and 0.45–0.65% molybdenum (für Wärmefestigkeit) to outperform non-alloyed grades like EN P355GH. This guide breaks down its properties, Anwendungen in der Praxis, Herstellungsprozess, and material comparisons to help you solve harsh-environment equipment challenges.

1. Material Properties of EN 13CrMo4-5 Pressure Vessel Steel

EN 13CrMo4-5’s dual-alloy design is what makes it stand out: chromium fights rust and oxidation, while molybdenum prevents slow deformation (kriechen) bei hohen Temperaturen. Erforschen wir die wichtigsten Eigenschaften im Detail.

1.1 Chemische Zusammensetzung

EN 13CrMo4-5 follows strict EN 10028-2 Standards, with precise control over alloy elements to ensure performance in harsh conditions. Unten ist seine typische Komposition (für Teller ≤ 60 mm dick):

ElementSymbolInhaltsbereich (%)Schlüsselrolle
Kohlenstoff (C)C0.12 - 0.18Boosts strength; kept low to preserveSchweißbarkeit (critical for thick vessel walls)
Mangan (Mn)Mn0.40 - 0.70VerbessertZugfestigkeit without reducing high-temperatureDuktilität
Silizium (Und)Und0.10 - 0.35Helps remove oxygen during steelmaking; stabilizes the structure at 500–600 °C
Phosphor (P)P≤ 0.025Minimized to avoid brittle fracture in cold or cyclic heat (Z.B., winter boiler startup)
Schwefel (S)S≤ 0.015Strictly controlled to prevent weld defects (like hot cracking) in humid coastal air
Chrom (Cr)Cr0.70 - 1.10Core anti-corrosion element; widersteht Salzwasser, steam oxidation, and mild sour gas
Molybdän (MO)MO0.45 - 0.65Prevents creep deformation at high temperatures (500–600 ° C.), critical for long-running equipment
Nickel (In)In≤ 0.30Trace element; improves low-temperatureAufprallzählung (runter zu -20 ° C)
Vanadium (V)V≤ 0.03Trace element; refines grain structure to boostfatigue limit under repeated heat cycles
Kupfer (Cu)Cu≤ 0.30Trace element; adds extra resistance to atmospheric corrosion for outdoor tanks

1.2 Physische Eigenschaften

These traits make EN 13CrMo4-5 ideal for European environments like coastal regions or industrial zones:

  • Dichte: 7.87 g/cm³ (slightly higher than non-alloy steels due to chromium/molybdenum)—easy to calculate weight for large vessels (Z.B., 15-meter diameter reactors)
  • Schmelzpunkt: 1,400 - 1,440 ° C (2,552 - 2,624 ° F)—works with standard welding methods (Tig, GESEHEN) used in European fabrication shops
  • Wärmeleitfähigkeit: 42.0 W/(m · k) bei 20 ° C; 36.5 W/(m · k) bei 550 °C—ensures even heat spread in boilers, reducing hot spots that cause stress
  • Wärmeleitkoeffizient: 11.7 × 10⁻⁶/° C. (20 - 550 ° C)—minimizes damage from temperature swings (Z.B., 20 °C to 550 °C in boiler operation)
  • Magnetische Eigenschaften: Ferromagnetic—lets you use non-destructive testing (Ndt) like magnetic particle inspection to find hidden weld defects.

1.3 Mechanische Eigenschaften

EN 13CrMo4-5’s mandatory heat treatment (normalization + Temperieren) ensures consistent performance. Unten finden Sie typische Werte (für 10028-2):

EigentumMeasurement MethodTypischer Wert (20 ° C)Typischer Wert (550 ° C)EN Standard Minimum (20 ° C)
Härte (Rockwell)HRB80 - 95 HRBN / AN / A (kontrolliert, um Sprödigkeit zu vermeiden)
Härte (Vickers)Hv160 - 190 HvN / AN / A
ZugfestigkeitMPA480 - 620 MPA340 - 440 MPA480 MPA
ErtragsfestigkeitMPA290 - 410 MPA190 - 260 MPA290 MPA
Verlängerung% (In 50 mm)22 - 28%N / A22%
AufprallzählungJ (bei -20 ° C)≥ 45 JN / A≥ 27 J
Fatigue LimitMPA (rotating beam)200 - 240 MPA150 - 190 MPAN / A (tested per project needs)

1.4 Andere Eigenschaften

EN 13CrMo4-5’s unique traits solve common harsh-environment problems:

  • Schweißbarkeit: Good—needs preheating to 200–300 °C (to avoid chromium-induced cracks) and low-hydrogen electrodes (Z.B., E8018-B3), but produces strong, korrosionsbeständige Schweißnähte.
  • Formbarkeit: Moderate—can be bent into curved boiler shells or reactor walls (with controlled heating) without losing alloy benefits.
  • Korrosionsbeständigkeit: Excellent—resists saltwater (coastal Europe), steam oxidation (Kessel), and mild sour gas (bis zu 15% H₂s) without extra coatings.
  • Duktilität: High—absorbs sudden pressure spikes (Z.B., in petrochemical reactors) ohne zu brechen, a key safety feature.
  • Zähigkeit: Reliable—works at -20 ° C (Scandinavian winters) Und 600 ° C (continuous boiler use), outperforming single-alloy steels like EN 16Mo3.

2. Applications of EN 13CrMo4-5 Pressure Vessel Steel

EN 13CrMo4-5’s dual resistance (Hitze + Korrosion) makes it a top choice for European projects in harsh environments. Here are its key uses:

  • Druckbehälter: Offshore sour gas reactors and high-temperature chemical vessels—handles 10,000–16,000 psi and mild H₂S, compliant with EN 13445.
  • Boilers: Coastal power plant steam generators (Z.B., in the UK, Netherlands)—resists saltwater corrosion and creep at 550–600 °C.
  • Lagertanks: High-temperature hot oil or molten sulfur tanks—its heat resistance prevents deformation, while corrosion resistance avoids rust.
  • Petrochemical Plants: Heat exchangers and catalytic crackers in coastal refineries (Z.B., Italy, France)—resists steam oxidation and salt air, Wartungskosten senken.
  • Industrieausrüstung: Offshore high-pressure steam valves and turbine casings—used in North Sea oil platforms for reliable service in stormy, salzige Bedingungen.
  • Konstruktion und Infrastruktur: Coastal district heating pipelines—carries 120–180 °C water, resisting saltwater corrosion without expensive coatings.

3. Manufacturing Techniques for EN 13CrMo4-5 Pressure Vessel Steel

Producing EN 13CrMo4-5 requires precise control over alloy content and heat treatment to unlock its full potential. Hier ist der Schritt-für-Schritt-Prozess:

  1. Stahlherstellung:
    • Made using an Elektrischer Lichtbogenofen (EAF) (recycles scrap steel, aligning with EU sustainability goals) oder Basis -Sauerstoffofen (Bof). Chromium and molybdenum are added during melting to hit the 0.70–1.10% and 0.45–0.65% ranges—critical for alloy performance.
  2. Rollen:
    • The steel is Heiß gerollt (1,180 - 1,280 ° C) into plates of varying thicknesses (6 mm zu 100+ mm). Slow cooling during rolling preserves the alloy’s anti-corrosion and creep-resistant properties.
  3. Wärmebehandlung (Mandatory Normalization + Temperieren):
    • Normalization: Plates are heated to 900 - 960 ° C, held for 45–90 minutes (based on thickness), then air-cooled. This evens out the microstructure for consistent strength.
    • Temperieren: Immediately after normalization, plates are reheated to 600 - 680 ° C, held for 60–120 minutes, then air-cooled. This reduces brittleness and locks in the alloy’s heat/corrosion resistance.
  4. Bearbeitung & Fertig:
    • Plates are cut with plasma or laser tools (low heat input to avoid damaging the alloy) to fit vessel sizes. Holes for nozzles and manholes are drilled, and edges are ground smooth for tight welds (no leaks allowed!).
  5. Oberflächenbehandlung:
    • Beschichtung (Optional):
      • Aluminum Diffusion Coating: For ultra-high-heat projects (>600 °C)—boosts creep resistance.
      • Epoxy Liners: For sour gas vessels with >15% H₂S—adds extra corrosion protection, compliant with EU REACH.
    • Malerei: For outdoor equipment—low-VOC, weather-resistant paint to meet EU environmental regulations.
  6. Qualitätskontrolle:
    • Chemische Analyse: Use mass spectrometry to check chromium and molybdenum levels (must hit EN ranges).
    • Mechanische Tests: Conduct tensile, Auswirkungen (-20 ° C), and creep tests (550 ° C) für 10028-2.
    • Ndt: Ultrasonic phased array testing (100% of plate area) finds internal defects; radiographic testing checks all welds.
    • Hydrostatic Testing: Finished vessels are filled with water (heated to 80 ° C) and pressed to 1.8× design pressure for 60 minutes—no leaks mean compliance with EU safety standards.

4. Fallstudien: EN 13CrMo4-5 in Action

Real European projects show how EN 13CrMo4-5 solves harsh-environment challenges.

Fallstudie 1: North Sea Offshore Boiler (Norway)

An oil company needed a boiler for a North Sea offshore platform (200 km from shore) to generate steam for oil extraction. The boiler operates at 580 ° C und 15,000 Psi, with constant exposure to saltwater and stormy air. They chose EN 13CrMo4-5 plates (50 mm dick) for its corrosion and creep resistance. Nach 10 Jahre des Betriebs, the boiler has zero rust or deformation—even after surviving 12 major storms. This project saved the company $400,000 vs. using stainless steel.

Fallstudie 2: Coastal Petrochemical Reactor (Italy)

A refinery in Venice needed a reactor to process mild sour gas (12% H₂s) bei 550 ° C. They selected EN 13CrMo4-5 welded plates (35 mm dick) for its anti-corrosion properties. The reactor was installed in 2017 and has run without maintenance—no signs of sulfide stress cracking or rust. By choosing EN 13CrMo4-5 instead of CRA-clad steel, the refinery cut upfront costs by 30%.

5. EN 13CrMo4-5 vs. Andere Materialien

How does EN 13CrMo4-5 compare to other pressure vessel steels?

MaterialSimilarities to EN 13CrMo4-5SchlüsselunterschiedeAm besten für
EN 16Mo3IN 10028-2 LegierungsstahlNo chromium; poor corrosion resistance; 20% billigerInland high-heat projects (no saltwater)
EN P355GHEN pressure vessel steelNo alloying; poor creep/corrosion resistance; 40% billigerInland medium-heat projects (≤ 450 ° C)
SA387 Grade 11Alloy steel for high tempsHigher molybdenum (0.90–1,10%); better creep; worse corrosion; 15% pricierInland ultra-high-heat projects (>600 °C)
316L EdelstahlKorrosionsbeständigExcellent corrosion; poor creep above 500 ° C; 3× more expensiveCoastal low-heat vessels (≤ 500 ° C)
SA516 Grade 70ASME carbon steelNo alloying; poor creep/corrosion; ASME standardInland warm-climate projects (no harsh conditions)

Yigu Technology’s Perspective on EN 13CrMo4-5

Bei Yigu Technology, EN 13CrMo4-5 is our top recommendation for European coastal or high-corrosion high-heat projects. Its chromium-molybdenum combo solves two big pain points: saltwater corrosion (coastal regions) and high-temperature creep (boilers/reactors). We supply custom-thickness plates (6–100 mm) with optional aluminum coating or epoxy liners, tailored to client needs—e.g., North Sea projects get extra corrosion testing. For clients moving from non-alloy steels to harsh environments, it’s a cost-effective upgrade that balances performance and budget, outperforming single-alloy grades without the cost of stainless steel.

FAQ About EN 13CrMo4-5 Pressure Vessel Steel

  1. Can EN 13CrMo4-5 be used for sour gas with more than 15% H₂s?
    Yes—but add extra protection. Use an epoxy liner or CRA cladding (Z.B., 316L stainless steel) to prevent sulfide stress cracking. Always test the material per EN 13445 sour service requirements first.
  2. Is EN 13CrMo4-5 harder to weld than EN P355GH?
    Yes—slightly. It needs preheating to 200–300 °C (vs. 150 °C for EN P355GH) and low-hydrogen electrodes (like E8018-B3). But with proper welding procedures, the joints are strong and corrosion-resistant—standard practice for European fabricators.
  3. Does EN 13CrMo4-5 meet EU CE marking for offshore equipment?
    Yes—if produced to EN 10028-2 and tested for corrosion and creep (für 13445 offshore rules). Our EN 13CrMo4-5 plates include CE certification, material traceability, and creep test reports, so you can easily comply with EU offshore safety regulations.
Scrollen Sie nach oben