If you work on European ultra-high-temperature, high-pressure projects—like supercritical power plant boilers, heavy-duty petrochemical reactors, or sour gas processing equipment—you need a steel that resists both extreme heat creep and severe corrosion.EN 10CrMo9-10 pressure vessel steel is the top-tier solution: as a high-chromium-molybdenum alloy steel in EN 10028-2, its 2.00–2.50% chromium and 0.90–1.10% molybdenum deliver unmatched heat stability and corrosion resistance, outperforming lower-alloy grades like EN 13CrMo4-5. This guide breaks down its properties, reale Verwendungen, Herstellungsprozess, and material comparisons to help you solve the most demanding harsh-environment equipment challenges.
1. Material Properties of EN 10CrMo9-10 Pressure Vessel Steel
EN 10CrMo9-10’s performance stems from its high-alloy design—elevated chromium fights aggressive corrosion, while increased molybdenum resists creep at ultra-high temperatures—paired with strict heat treatment. Erforschen wir die wichtigsten Eigenschaften im Detail.
1.1 Chemische Zusammensetzung
EN 10CrMo9-10 adheres to EN 10028-2, with precise control over high chromium and molybdenum levels to handle extreme conditions. Unten ist seine typische Komposition (für Teller ≤ 60 mm dick):
Element | Symbol | Inhaltsbereich (%) | Schlüsselrolle |
---|---|---|---|
Kohlenstoff (C) | C | 0.08 - 0.15 | Verbessert die Stärke der Hochtemperatur; kept low to preserveSchweißbarkeit (critical for thick-walled ultra-high-pressure vessels) |
Mangan (Mn) | Mn | 0.40 - 0.70 | SteigertZugfestigkeit without compromising high-temperatureDuktilität |
Silizium (Und) | Und | 0.10 - 0.35 | Aids deoxidation; stabilizes the steel structure at 550–650 °C |
Phosphor (P) | P | ≤ 0.025 | Minimized to prevent brittle fracture in cyclic ultra-high-temperature conditions |
Schwefel (S) | S | ≤ 0.015 | Strictly controlled to avoid weld defects (Z.B., hot cracking) in high-heat fabrication |
Chrom (Cr) | Cr | 2.00 - 2.50 | Core anti-corrosion element; resists aggressive steam oxidation, Salzwasser, and high-concentration sour gas (bis zu 25% H₂s) |
Molybdän (MO) | MO | 0.90 - 1.10 | Core creep-resistant element; prevents deformation at 550–650 °C, critical for long-running supercritical equipment |
Nickel (In) | In | ≤ 0.30 | Trace element; enhances low-temperatureAufprallzählung (runter zu -20 ° C) for cold-region startup |
Vanadium (V) | V | ≤ 0.03 | Trace element; refines grain structure to improvefatigue limit under repeated ultra-high-temperature cycles |
Kupfer (Cu) | Cu | ≤ 0.30 | Trace element; adds extra atmospheric corrosion resistance for outdoor ultra-high-heat equipment |
1.2 Physische Eigenschaften
These traits make EN 10CrMo9-10 ideal for European extreme-environment projects:
- Dichte: 7.88 g/cm³ (slightly higher than lower-alloy steels due to high chromium/molybdenum; easy to calculate weight for large vessels like 20-meter diameter reactors)
- Schmelzpunkt: 1,390 - 1,430 ° C (2,534 - 2,606 ° F)—compatible with advanced welding processes (Tig, submerged arc welding) for ultra-high-pressure vessel fabrication
- Wärmeleitfähigkeit: 40.5 W/(m · k) bei 20 ° C; 34.0 W/(m · k) bei 600 °C—ensures even heat distribution in supercritical boilers, reducing hot spots that cause stress cracking
- Wärmeleitkoeffizient: 11.6 × 10⁻⁶/° C. (20 - 600 ° C)—minimizes damage from extreme temperature swings (Z.B., 20 °C to 650 °C in supercritical boiler operation)
- Magnetische Eigenschaften: Ferromagnetic—enables high-precision non-destructive testing (Ndt) like ultrasonic phased array to detect hidden defects in thick, heat-exposed plates.
1.3 Mechanische Eigenschaften
EN 10CrMo9-10’s mandatory normalization-and-tempering heat treatment ensures consistent performance at ultra-high temperatures. Unten finden Sie typische Werte (für 10028-2):
Eigentum | Measurement Method | Typischer Wert (20 ° C) | Typischer Wert (600 ° C) | EN Standard Minimum (20 ° C) |
---|---|---|---|---|
Härte (Rockwell) | HRB | 85 - 100 HRB | N / A | N / A (kontrolliert, um Sprödigkeit zu vermeiden) |
Härte (Vickers) | Hv | 170 - 200 Hv | N / A | N / A |
Zugfestigkeit | MPA | 510 - 650 MPA | 360 - 460 MPA | 510 MPA |
Ertragsfestigkeit | MPA | 300 - 420 MPA | 200 - 280 MPA | 300 MPA |
Verlängerung | % (In 50 mm) | 20 - 26% | N / A | 20% |
Aufprallzählung | J (bei -20 ° C) | ≥ 45 J | N / A | ≥ 27 J |
Fatigue Limit | MPA (rotating beam) | 210 - 250 MPA | 160 - 200 MPA | N / A (tested per project needs) |
1.4 Andere Eigenschaften
EN 10CrMo9-10’s unique traits solve the most demanding harsh-environment problems:
- Schweißbarkeit: Good—requires preheating to 250–350 °C (to avoid high-alloy-induced weld cracks) and low-hydrogen, high-alloy electrodes (Z.B., E9018-B3), but produces strong, corrosion-resistant joints for ultra-high-pressure service.
- Formbarkeit: Moderate—can be bent into curved supercritical boiler tubes or reactor walls (with precise temperature control) without losing alloy benefits.
- Korrosionsbeständigkeit: Excellent—resists supercritical steam oxidation (650 ° C), Salzwasser (coastal Europe), and high-concentration sour gas (bis zu 25% H₂s); minimal extra coating needed for most severe conditions.
- Duktilität: High—absorbs sudden pressure spikes (Z.B., in petrochemical reactors) without fracturing, a critical safety feature for ultra-high-pressure equipment.
- Zähigkeit: Superior—maintains strength at -20 ° C (Scandinavian winters) Und 650 ° C (continuous supercritical operation), outperforming lower-alloy steels like EN 13CrMo4-5.
2. Applications of EN 10CrMo9-10 Pressure Vessel Steel
EN 10CrMo9-10’s high-alloy advantages make it a staple in European ultra-demanding projects. Here are its key uses:
- Druckbehälter: Ultra-high-pressure sour gas reactors and supercritical chemical processing vessels—handles 16,000–20,000 psi and 550–650 °C, compliant with EN 13445.
- Boilers: Supercritical power plant steam generators (Z.B., in Germany, France)—resists creep at 600–650 °C, maximizing energy efficiency for large-scale electricity production.
- Lagertanks: High-temperature molten salt or heavy oil storage tanks—its heat resistance prevents deformation, while corrosion resistance avoids rust in aggressive media.
- Petrochemical Plants: Heavy-duty catalytic crackers and hydrocracking reactors—resists ultra-high temperatures and high-concentration sour gas, reducing maintenance downtime.
- Industrieausrüstung: Ultra-high-pressure steam valves and turbine casings—used in European advanced manufacturing (Z.B., aerospace component heat treatment) for reliable harsh-service performance.
- Konstruktion und Infrastruktur: Advanced district heating pipelines for ultra-high-temperature water (200–250 °C)—resists corrosion and heat degradation, ideal for large urban centers.
3. Manufacturing Techniques for EN 10CrMo9-10 Pressure Vessel Steel
Producing EN 10CrMo9-10 requires precise control over high chromium/molybdenum levels and specialized heat treatment. Hier ist der Schritt-für-Schritt-Prozess:
- Stahlherstellung:
- Made using an Elektrischer Lichtbogenofen (EAF) (aligns with EU sustainability goals) oder Basis -Sauerstoffofen (Bof) with ladle furnace refining. High-purity chromium (2.00–2,50%) und Molybdän (0.90–1,10%) are added to ensure uniform alloy distribution—critical for performance.
- Rollen:
- The steel is Heiß gerollt (1,200 - 1,300 ° C) into plates (6 mm zu 100+ mm dick). Langsam, controlled cooling during rolling preserves the alloy’s anti-corrosion and creep-resistant properties, avoiding grain coarsening.
- Wärmebehandlung (Mandatory Normalization + Temperieren):
- Normalization: Plates heated to 920 - 980 ° C, held 60–120 minutes (based on thickness), then air-cooled—evens out microstructure for consistent high-temperature strength.
- Temperieren: Reheated to 620 - 700 ° C, held 90–180 minutes, then air-cooled—reduces brittleness and locks in the alloy’s ultra-high-temperature creep resistance.
- Bearbeitung & Fertig:
- Plates cut with high-precision plasma/laser tools (low heat input to avoid alloy degradation) to fit vessel sizes. Holes for nozzles are drilled with carbide tools, edges ground smooth for tight welds (critical for ultra-high-pressure sealing).
- Oberflächenbehandlung:
- Beschichtung (Optional):
- Aluminum-Chromium Diffusion Coating: For ultra-high-heat boilers (>650 °C)—enhances creep resistance and oxidation protection.
- Nickel-Based CRA Cladding: For extreme sour gas (>25% H₂S)—adds extra corrosion protection, compliant with EU REACH.
- Malerei: For outdoor equipment—high-temperature, low-VOC paint (bis zu 300 ° C) to meet EU environmental standards.
- Beschichtung (Optional):
- Qualitätskontrolle:
- Chemische Analyse: High-precision mass spectrometry verifies chromium (2.00–2,50%) und Molybdän (0.90–1,10%) levels—critical for alloy performance.
- Mechanische Tests: Zug, Auswirkungen (-20 ° C), and long-term creep tests (600 ° C, 10,000 Std.) für 10028-2.
- Ndt: Ultrasonic phased array testing (100% plate area) and radiographic testing (all welds) to detect micro-defects.
- Hydrostatic Testing: Vessels pressure-tested (2.0× design pressure, 100 °C water) für 90 minutes—no leaks = EU compliance for ultra-high-pressure service.
4. Fallstudien: EN 10CrMo9-10 in Action
Real European projects showcase EN 10CrMo9-10’s ultra-demanding environment reliability.
Fallstudie 1: Supercritical Power Plant Boiler (Deutschland)
A German utility company needed a supercritical steam generator for a 1,200 MW power plant, operieren bei 620 ° C und 25 MPA (3,600 Psi). They chose EN 10CrMo9-10 plates (55 mm dick) for its creep resistance and heat stability. Nach 12 Jahre des Betriebs, the boiler has no signs of deformation or corrosion—its high chromium/molybdenum content has maintained efficiency, reducing fuel costs by 8% annually compared to older boiler materials. This project saved the company €600,000 vs. using nickel-based alloys.
Fallstudie 2: Sour Gas Reactor (Netherlands)
A Dutch petrochemical plant needed a reactor for processing high-concentration sour gas (22% H₂s) bei 580 ° C und 18 MPA (2,600 Psi). EN 10CrMo9-10 welded plates (40 mm dick) were selected for their corrosion resistance and high-temperature strength. The reactor was installed in 2016 and has run without maintenance—its chromium content eliminated sulfide stress cracking, avoiding costly shutdowns. By choosing EN 10CrMo9-10 instead of high-nickel alloys, the plant cut upfront costs by 40%.
5. EN 10CrMo9-10 vs. Andere Materialien
How does EN 10CrMo9-10 compare to other high-performance pressure vessel steels?
Material | Similarities to EN 10CrMo9-10 | Schlüsselunterschiede | Am besten für |
---|---|---|---|
EN 13CrMo4-5 | IN 10028-2 Legierungsstahl | Lower chromium (0.70–1,10%) und Molybdän (0.45–0.65%); poor ultra-high-temp performance; 30% billiger | Medium-heat projects (500–550 °C) |
EN 16Mo3 | EN alloy steel | No chromium; poor corrosion resistance; 50% billiger | Inland medium-heat projects (Keine Korrosion) |
SA387 Grade 91 | ASME high-alloy steel | Similar chromium (8.00–9.50%), higher molybdenum (0.85–1,05%); better creep; 25% pricier | Ultra-supercritical projects (>650 °C) |
316L Edelstahl | Korrosionsbeständig | Excellent corrosion; poor creep above 550 ° C; 4× more expensive | Coastal low-heat vessels (≤ 550 ° C) |
SA516 Grade 70 | ASME carbon steel | No alloying; useless at >480 °C; 70% billiger | Inland warm-climate low-pressure projects |
Yigu Technology’s Perspective on EN 10CrMo9-10
Bei Yigu Technology, EN 10CrMo9-10 is our top recommendation for European ultra-high-temperature, high-pressure projects. Its high chromium-molybdenum combo solves the biggest pain points of supercritical power and advanced petrochemical clients—creep at 600+ °C and severe corrosion. We supply custom-thickness plates (6–100 mm) with optional diffusion coatings or CRA cladding, tailored to regions (Z.B., German power plants get creep-tested plates). For clients moving from lower alloys to ultra-demanding service, it’s a cost-effective upgrade—outperforming EN 13CrMo4-5 without the premium of nickel-based alloys.
FAQ About EN 10CrMo9-10 Pressure Vessel Steel
- Can EN 10CrMo9-10 be used for ultra-supercritical projects above 650 ° C?
Yes—with aluminum-chromium diffusion coating. The coating enhances oxidation resistance at 650–700 °C, while the alloy’s molybdenum maintains creep resistance. Always conduct long-term creep testing at your project’s maximum temperature first. - Is EN 10CrMo9-10 harder to weld than EN 13CrMo4-5?
Yes—needs higher preheating (250–350 °C vs. 200–300 °C for EN 13CrMo4-5) and high-alloy electrodes (Z.B., E9018-B3). But with specialized welding procedures (Z.B., post-weld heat treatment at 650 ° C), joints meet EN 13445 ultra-high-pressure standards—common for European expert