Elements of CNC Machining: Mastering Cutting Speed, Füttern, Depth for Precision

Polysulfon PSU CNC -Bearbeitung

CNC machining relies on three core elements to deliver efficient, Hochwertige Ergebnisse: Schnittgeschwindigkeit, tool feed, Und Tiefe des Schnitts. These elements are like the “engine, transmission, and fuel” of a car—each works independently but must be balanced to avoid mistakes like tool damage, Schlechte Oberflächenbeschaffung, or wasted time. This guide breaks down each element of CNC machining, solves common parameter-setting problems, and helps you optimize them for your specific project.

1. Schnittgeschwindigkeit: The “Speed Limit” for Tool and Material

Schnittgeschwindigkeit is the speed at which the workpiece or tool moves relative to each other during machining (measured in m/min or ft/min). It directly impacts how fast you can machine a part—and how long your tool lasts.

1.1 Key Factors That Determine Cutting Speed

Cutting speed isn’t one-size-fits-all. It depends on three critical factors:

  • Werkzeugmaterial: Harder tools handle faster speeds. Carbid -Werkzeuge (common in industrial CNC) can run 3–5x faster than high-speed steel (HSS) Werkzeuge.
  • Werkstückmaterial: Weiche Materialien (Z.B., Aluminium) allow faster speeds than hard materials (Z.B., Edelstahl).
  • Machining Conditions: Wet machining (mit Kühlmittel) lets you increase speed by 20–30% (coolant reduces heat and tool wear).

The table below shows recommended cutting speeds for common tool-workpiece pairs:

WerkzeugmaterialWerkstückmaterialDry Machining Speed (m/my)Wet Machining Speed (m/my)
CarbidAluminium300–500400–600
CarbidEdelstahl80–120100–150
HSSAluminium100–150120–180
HSSEdelstahl20–4030–50

1.2 Gemeinsames Problem gelöst: “Why is my tool wearing out too fast?”

You’re likely using a cutting speed that’s too high for your tool-workpiece pair. Zum Beispiel:

  • If you run a carbide tool on stainless steel at 200 m/my (trocken), the tool will overheat and wear out in 30 Minuten.
  • Lower the speed to 100 m/my (trocken), and the tool lasts 4–6 hours—saving you money on tool replacements.

2. Tool Feed: Balancing Surface Quality and Efficiency

Tool feed is the distance the tool moves along the workpiece per revolution (measured in mm/rev or inches/rev). It controls two key outcomes: Oberflächenrauheit (how smooth the part is) and machining time.

2.1 How to Choose Tool Feed

The right feed rate depends on whether you’re doing rough machining (Material schnell entfernen) oder finish machining (creating a smooth surface):

  • Grobe Bearbeitung: Use a larger feed rate (0.2–0.5 mm/rev) to remove material fast. Zum Beispiel, when cutting a 100mm aluminum block down to 80mm, A 0.4 mm/rev feed cuts the block in 5 Minuten (vs. 10 minutes with a 0.2 mm/rev feed).
  • Bearbeitung abschließen: Use a smaller feed rate (0.05–0,15 mm/rev) für glatte Oberflächen. A 0.1 mm/rev feed on a stainless steel part creates a surface roughness (Ra) von 1.6 μm—smooth enough for visible parts like consumer electronics.

2.2 Kritische Überlegungen

  • Maschinenleistung: A weak CNC machine (low horsepower) can’t handle large feed rates—too much feed will stall the spindle.
  • Tool Rigidity: Lang, thin tools need smaller feeds (0.05–0,1 mm/U) Vibration vermeiden (which ruins surface quality). Kurz, thick tools can handle larger feeds.

Beispiel: A user is finish-machining a aluminum phone case. They start with a 0.2 mm/rev feed and get a rough surface (Ra 6.3 μm). They lower the feed to 0.1 mm/U, and the surface becomes smooth (Ra 1.6 μm)—perfect for a consumer product.

3. Tiefe des Schnitts: Minimizing Passes Without Breaking Tools

Tiefe des Schnitts is the distance the tool penetrates into the workpiece per pass (measured in mm or inches). It’s all about efficiency—using a larger depth reduces the number of passes, but too much depth can damage the tool or workpiece.

3.1 Rules for Choosing Depth of Cut

Befolgen Sie diese Richtlinien, um Fehler zu vermeiden:

  1. Prioritize Large Depths (Wenn möglich): On rough machining, use the largest depth your tool and machine can handle. For a carbide tool cutting aluminum, a 5–10 mm depth per pass is safe—this cuts a 50mm thick block in 5–10 passes (vs. 25 passes with a 2 MM -Tiefe).
  2. Limit Depth for Hard Materials: For stainless steel or titanium, keep depth under 2–3 mm per pass (hard materials put more stress on tools).
  3. Finish Machining Needs Small Depths: Use a 0.1–0.5 mm depth for finish passes—this removes small imperfections without altering the part’s dimensions.

3.2 Gemeinsames Problem gelöst: “Why is my workpiece deforming during machining?”

You’re using a depth of cut that’s too large for the workpiece’s rigidity. Zum Beispiel:

  • A thin aluminum sheet (2mm dick) can’t handle a 1.5 mm depth of cut—the sheet will bend under the tool’s force.
  • Reduce the depth to 0.5 mm pro Pass, and the sheet stays flat—ensuring the final part meets your size requirements.

4. How to Balance the Three Elements: Eine Schritt-für-Schritt-Anleitung

The biggest challenge isn’t setting each element individually—it’s balancing them to get fast, Hochwertige Ergebnisse. Follow this process:

  1. Start with Cutting Speed: Pick a speed based on your tool and workpiece (use the table in Section 1.1). Zum Beispiel: Carbide tool + aluminum = 400 m/my (nass).
  2. Choose Tool Feed: Match feed to machining type. Rough machining = 0.3 mm/U; finish machining = 0.1 mm/U.
  3. Set Depth of Cut: Use the largest safe depth. Für grobe Bearbeitung: 8 mm pro Pass (Aluminium); for finish machining: 0.3 mm pro Pass.
  4. Testen und einstellen: Run a small test part. If the tool wears fast, lower the speed. If the surface is rough, reduce the feed. If the part deforms, decrease the depth.

Beispiel: A manufacturer needs to machine 100 Aluminiumhalterungen. They balance the elements as follows:

  • Schnittgeschwindigkeit: 400 m/my (Carbid + wet machining).
  • Tool Feed: 0.3 mm/U (rauh) → 0.1 mm/U (beenden).
  • Tiefe des Schnitts: 8 mm (rauh) → 0.3 mm (beenden).

Ergebnis: Each bracket takes 12 minutes to make (vs. 20 minutes with unbalanced settings), and the tools last 8 Std..

5. Real-World Scenarios: Applying the Elements to Common Projects

See how the three elements work together for different CNC jobs:

ProjektTool/WorkpieceSchnittgeschwindigkeit (m/my)Tool Feed (mm/U)Tiefe des Schnitts (mm)Machining Time per Part
Aluminum Phone CaseCarbide/Aluminum400 (nass)0.3 (rauh) → 0.1 (beenden)5 (rauh) → 0.3 (beenden)12 Minuten
Stainless Steel GearCarbide/Stainless Steel120 (nass)0.2 (rauh) → 0.08 (beenden)2 (rauh) → 0.2 (beenden)45 Minuten
HSS Drill Bit (HSS/Steel)HSS/Carbon Steel30 (trocken)0.15 (Bohren)10 (single pass)8 Minuten

Perspektive der Yigu -Technologie

Bei Yigu Technology, Wir kennen die Beherrschung der elements of CNC machining is key to solving users’ efficiency and quality pain points. Many clients struggle with unbalanced parameters—wasting time on slow speeds or replacing tools too often. Our solutions include a “Parameter Matching Tool” that recommends cutting speed, füttern, and depth based on tool/workpiece pairs. We also offer carbide tool bundles optimized for common materials (Z.B., aluminum-specific carbide tools) to simplify setup. As CNC tech evolves, we’ll add AI-powered sensors to auto-adjust elements in real time, helping users achieve precision without manual trial-and-error.

FAQ

1. Can I use the same cutting speed for all machining operations (Mahlen, Bohren, drehen)?

No—operations have different requirements. Drilling needs slower speeds than milling (drills have smaller cutting edges that overheat faster). Zum Beispiel: Carbide drill on aluminum = 250 m/my (vs. 400 m/min for milling with the same tool).

2. What happens if I set the tool feed too low?

A too-low feed rate wastes time (Z.B., A 0.05 mm/rev feed on rough machining doubles the time) and can cause “rubbing” (the tool slides over the workpiece instead of cutting), which wears out the tool faster. Aim for the largest feed rate that keeps surface quality or efficiency on track.

3. Do I need to adjust depth of cut for different tool types?

Ja! Ende Mills (used for milling) can handle larger depths than drills (used for holes). A 10mm end mill on aluminum can take an 8mm depth, but a 10mm drill should only take 2–3mm per pass (drills are less rigid and prone to breaking with large depths).

Index
Scrollen Sie nach oben