Custom metal parts are the backbone of industries from aerospace to medical—they fit unique designs, solve specific problems, and turn ideas into functional products. Abercustomize metal parts isn’t a one-size-fits-all task: the right process depends on your material, Budget, design complexity, und Produktionsvolumen. Dieser Leitfaden bricht zusammen 8 key manufacturing processes for custom metal parts, compares their strengths, teilt Beispiele aus der Praxis, and helps you pick the perfect method for your project.
Erste: What Matters When Customizing Metal Parts?
Before choosing a process, you need to clarify 4 core factors—they’ll narrow down your options and avoid costly mistakes:
- Design Complexity: Is your part simple (z.B., eine flache Halterung) or complex (z.B., a lattice-structured aerospace component)? Some processes handle curves and hollow shapes better than others.
- Material Choice: Do you need aluminum (leicht), Edelstahl (korrosionsbeständig), oder Titan (hochfest)? Not all processes work with every metal.
- Produktionsvolumen: Are you making 5 Prototypen bzw 5,000 Produktionsteile? Costs and speed vary drastically by batch size.
- Tolerance Needs: How precise does the part need to be? A medical implant might need ±0.025mm tolerance, while a decorative part could use ±0.1mm.
Beispiel: If you’re making 10 custom titanium surgical tools (complex design, enge Toleranz), your options will be very different than if you’re making 1,000 Aluminiumhalterungen (simple design, loose tolerance).
8 Key Processes to Customize Metal Parts (With Pros, Nachteile & Fälle)
Below are the most common methods to customize metal parts, each with how it works, best uses, and real-world success stories. We’ll start with the most versatile and move to specialized options.
1. CNC-Fräsen & Drehen (Best for Precision & Vielseitigkeit)
How it works: CNC machining is a subtractive process—starts with a solid metal block and uses computer-controlled tools (mills for 3D shapes, lathes for cylindrical parts) to cut away excess material. It uses G-code (programmed via CAM software) for ultra-precise cuts.
Am besten für: Simple-to-moderate designs, enge Toleranzen (±0.025mm), and small-to-large batches (1–10,000+ parts). Works with almost all metals (Aluminium, Stahl, Titan, Messing).
Vorteile & Nachteile:
| Vorteile | Nachteile |
|---|---|
| Hohe Präzision (ideal for tight-fit parts like gears) | Struggles with complex internal shapes (z.B., closed lattices) |
| Fast for repeatable parts (100 aluminum brackets = 8–12 hours) | Material waste (50–70% of the metal block is cut away) |
| Works with all common metals | Setup fees ($50–$200) für kleine Chargen |
Real-World Case: A medical device company used CNC turning to make 50 custom stainless steel dental drills. The drills needed a cylindrical shape with tiny, precise grooves (for cutting teeth) and ±0.03mm tolerance. CNC turning delivered consistent results, and the parts were ready in 3 days—faster than any other process.
Allgemeine Verwendungen: Getriebe, Klammern, chirurgische Instrumente, Automobilkomponenten.
2. Metall-3D-Druck (SLM/DMLS) (Best for Complex, Low-Volume Parts)
How it works: Also called additive manufacturing, it uses a laser to melt metal powder (z.B., Titan, Edelstahl) Schicht für Schicht, Bauen Sie das Teil von unten nach oben auf. No tooling is needed—just upload a 3D CAD file.
Am besten für: Komplexe Designs (Gitter, hohle Innenräume), low batches (1–50 Teile), and high-value parts (Luft- und Raumfahrt, medizinisch). Works with titanium, Edelstahl, and Inconel.
Vorteile & Nachteile:
| Vorteile | Nachteile |
|---|---|
| Makes shapes no other process can (z.B., interne Kühlkanäle) | Slow for large batches (10 parts = 4–8 hours) |
| Geringe Materialverschwendung (reuses 50%+ of unused powder) | Expensive per part (titanium part = $200–$500) |
| No setup fees (great for prototypes) | Lower tolerance than CNC (±0.1mm vs. ±0.025mm) |
Real-World Case: An aerospace startup needed 3 custom titanium engine parts with hollow interiors (um Gewicht zu reduzieren). CNC machining couldn’t reach the inner cavities, so they used SLM 3D printing. The parts were 30% lighter than solid versions, handled 600°C heat, and were ready in 3 days—saving $500 vs. custom casting.
Allgemeine Verwendungen: Medizinische Implantate, Luft- und Raumfahrtkomponenten, prototype parts with complex geometry.
3. Metal Casting (Sand & Investment) (Best for Large Batches & Simple Shapes)
How it works: Pour molten metal into a mold (sand for simple shapes, ceramic for detailed ones), let it cool, then break the mold to remove the part. Investment casting uses a wax model to create the mold—great for intricate details.
Am besten für: Simple-to-moderate designs, große Chargen (1,000+ Teile), and low-cost metals (Aluminium, iron, Kupferlegierungen).
Vorteile & Nachteile:
| Vorteile | Nachteile |
|---|---|
| Low cost for large batches (1,000 aluminum pipes = $5 pro Teil) | Slow setup (mold making = 1–2 weeks) |
| Works with large parts (z.B., 1m-tall machine frames) | Rough surface finish (bedarf einer Nachbearbeitung) |
| Geringe Materialverschwendung (uses only the metal needed for the part) | Poor tolerance (±0.5mm—no good for tight fits) |
Real-World Case: A construction equipment maker used sand casting to make 5,000 iron brackets for excavators. The brackets were simple (flat with holes) and didn’t need tight tolerance. Casting cost $3 per part—vs. $8 per part for CNC machining—saving $25,000 gesamt.
Allgemeine Verwendungen: Pipes, Maschinenrahmen, automotive engine blocks.
4. Druckguss (Best for High-Volume, Detailed Parts)
How it works: Similar to casting, but uses high pressure (hydraulic or pneumatic) to force molten metal into a reusable steel mold. Great for parts with small details (z.B., winzige Löcher, Logos).
Am besten für: Moderate-to-detailed designs, very large batches (10,000+ Teile), and low-melting metals (Aluminium, Zink, Magnesium).
Vorteile & Nachteile:
| Vorteile | Nachteile |
|---|---|
| Schnelle Produktion (10,000 zinc parts = 1 Woche) | Hohe Werkzeugkosten ($10,000–$50,000 for steel molds) |
| Smooth surface finish (no post-processing needed for cosmetics) | Only works with low-melting metals (no titanium/steel) |
| Consistent parts (ideal for consumer goods) | Not for complex internal shapes |
Real-World Case: A smartphone manufacturer used die casting to make 100,000 aluminum phone chassis. The chassis had tiny slots for buttons and a smooth finish—die casting delivered consistent results at $2 pro Teil. CNC machining would have cost $5 pro Teil, sparen $300,000.
Allgemeine Verwendungen: Phone chassis, Kfz-Sensoren, consumer electronics parts.
5. Extrusion (Best for Constant Cross-Section Parts)
How it works: Push heated metal through a mold with a fixed cross-section (z.B., tubes, L-shapes, Fensterrahmen), then cut it to length. Nachbearbeitung (Bohren, CNC) adds holes or details.
Am besten für: Parts with constant cross-sections (no changing shapes), große Chargen (1,000+ Teile), and aluminum (80% of extruded metal parts).
Vorteile & Nachteile:
| Vorteile | Nachteile |
|---|---|
| Ultra-low cost (1,000 aluminum tubes = $1 pro Teil) | Only for constant cross-sections (no curved or hollow interiors) |
| Schnelle Produktion (extrudes 10m of metal per minute) | Needs post-processing for custom details (z.B., Löcher) |
| Glatte Oberfläche (great for painted or anodized parts) | No tight tolerance (±0,1 mm) |
Real-World Case: A window manufacturer used extrusion to make 5,000 aluminum window frames. The frames had a complex cross-section (to hold glass and seals) but no changing shapes. Extrusion cost $4 per frame—vs. $10 per frame for CNC—and the parts were ready in 5 Tage.
Allgemeine Verwendungen: Fensterrahmen, Rohre, Automobilverkleidung, Kühlkörper.
6. Metal Injection Molding (MIM) (Best for Small, Detailed Parts)
How it works: Mix metal powder (Edelstahl, Titan) with plastic, inject the mixture into a mold, then heat it (sintering) to remove the plastic and fuse the metal.
Am besten für: Kleinteile (under 100g) with tiny details (z.B., Komponenten medizinischer Geräte), große Chargen (10,000+ Teile), and stainless steel/titanium.
Vorteile & Nachteile:
| Vorteile | Nachteile |
|---|---|
| Makes tiny, Detaillierte Teile (z.B., 2mm medical screws) | Hohe Werkzeugkosten ($5,000–$20,000) |
| Low per-part cost for large batches (10,000 parts = $1 each) | Not for large parts (max 100g) |
| High density (stronger than 3D printed parts) | Slow setup (mold making = 2–3 weeks) |
Real-World Case: A watchmaker used MIM to make 50,000 stainless steel watch gears. The gears were 3mm wide with tiny teeth—too small for CNC machining. MIM delivered consistent, strong gears at $0.80 each, sparen $2 per gear vs. manuelle Bearbeitung.
Allgemeine Verwendungen: Watch parts, medizinische Schrauben, small automotive sensors.
7. Schmieden (Best for High-Strength Parts)
How it works: Heat metal to a malleable state, then hammer or press it into shape using a mold. No melting—preserves the metal’s natural grain, making parts stronger.
Am besten für: Hochfeste Teile (z.B., Werkzeuge, Strukturbauteile), medium-to-large batches (100–10.000 Teile), and stainless steel/iron.
Vorteile & Nachteile:
| Vorteile | Nachteile |
|---|---|
| Ultrastark (20–30% stronger than cast parts) | No complex shapes (only simple, solid designs) |
| Geringe Materialverschwendung (verwendet 90% of raw metal) | Hohe Werkzeugkosten ($10,000–$30,000) |
| Good for high-stress parts (z.B., wrench heads) | Rough surface (bedarf einer Nachbearbeitung) |
Real-World Case: A tool manufacturer used forging to make 1,000 steel wrench heads. Forged wrenches could handle 500N of torque (vs. 300N for cast ones) and lasted 2x longer. The cost was $5 per wrench—only $1 more than casting—worth it for durability.
Allgemeine Verwendungen: Wrenches, hammer heads, automotive crankshafts, Strukturhalterungen.
8. Blech & Stempeln (Best for Flat, High-Volume Parts)
How it works: Cut flat metal sheets (Aluminium, Stahl) into shapes, then bend or punch them using a press brake. Stamping uses a die to mass-produce identical parts quickly.
Am besten für: Flat or slightly bent parts (z.B., Gehäuse, Klammern), very large batches (10,000+ Teile), and aluminum/steel.
Vorteile & Nachteile:
| Vorteile | Nachteile |
|---|---|
| Fastest process for large batches (100,000 parts = 1 Tag) | Only for flat/bent shapes (no 3D curves) |
| Low per-part cost ($0.50–$2 per part) | High tooling costs for stamping ($5,000–$15,000) |
| Leicht (great for enclosures) | Poor tolerance (±0,1 mm) |
Real-World Case: A computer manufacturer used sheet metal stamping to make 50,000 aluminum laptop enclosures. The enclosures were flat with bent edges—stamping delivered them at $1.20 each, vs. $3 each for CNC machining. The parts were ready in 3 Tage, meeting a tight product launch deadline.
Allgemeine Verwendungen: Laptop enclosures, Elektrokästen, Karosserieteile für Kraftfahrzeuge, Klammern.
How to Choose the Right Process (Cheat Sheet + Kostenvergleich)
Use this table to match your project needs to the best process. We’ve also included cost data for a standard aluminum part (100mm x 50mm x 5mm) to show how prices vary by batch size:
| Project Need | Best Process | Kosten für 10 Teile | Kosten für 1,000 Teile | Kosten für 10,000 Teile |
|---|---|---|---|---|
| Complex design, low batch (Prototypen) | Metall-3D-Druck (SLM) | $200 | $15,000 | Not recommended |
| Simple design, enge Toleranz | CNC-Bearbeitung | $150 | $5,000 | $30,000 |
| Constant cross-section, large batch | Extrusion | $50 (plus post-processing) | $1,000 | $8,000 |
| Klein, detailed part, large batch | Metal Injection Molding (MIM) | $500 (aufstellen) + $50 | $5,000 | $10,000 |
| High-strength part, medium batch | Schmieden | $300 (aufstellen) + $100 | $8,000 | $50,000 |
| Flat part, very large batch | Sheet Metal Stamping | $1,000 (aufstellen) + $20 | $2,000 | $7,000 |
Key Takeaway: Für kleine Chargen, CNC or 3D printing is best. Für große Chargen, Extrusion, Stempeln, or MIM saves money. For strength, choose forging. For complexity, choose 3D printing.
Yigu Technology’s Perspective on Customizing Metal Parts
Bei Yigu Technology, we tailor custom metal part solutions to your unique needs. For precision parts (like medical tools), we use CNC machining for tight tolerances. For complex aerospace components, Metall-3D-Druck (SLM) delivers unbeatable geometry. Für große Chargen (wie Kfz-Halterungen), we recommend extrusion or stamping to cut costs. We also handle post-processing—from polishing CNC parts to anodizing extruded aluminum—to ensure your parts look and perform perfectly. Our team works with you to balance cost, Geschwindigkeit, und Qualität, so you get custom parts that fit your project, not the other way around.
FAQ About Customizing Metal Parts
1. What’s the cheapest way to customize metal parts for large batches?
Für große Chargen (10,000+ Teile), sheet metal stamping (für flache Teile) oder Extrusion (for constant cross-sections) is cheapest. Both have high upfront tooling costs but ultra-low per-part costs—e.g., stamping a 100mm aluminum bracket costs $0.50 per part for 10,000 Einheiten.
2. Can I customize titanium parts with any process?
No—titanium is hard to melt and cut, so only a few processes work: CNC-Bearbeitung (best for precision), Metall-3D-Druck (SLM, best for complexity), and metal injection molding (MIM, best for small parts). Die casting and extrusion don’t work with titanium (it has a high melting point).
3. How long does it take to customize metal parts?
It depends on the process and batch size:
- Kleine Chargen (10 Teile): CNC = 3 Tage, 3D printing = 2 Tage.
- Mittlere Chargen (1,000 Teile): CNC = 1 Woche, extrusion = 5 Tage.
- Große Chargen (10,000 Teile): Stamping = 3 Tage, MIM = 2 Wochen (due to tooling).
Setup time (mold/tool making) adds 1–2 weeks for casting, Stempeln, or MIM.
