Wenn es geht zu plastic fabrication, two processes stand out for their versatility: CNC -Bearbeitung (subtractive) Und 3D Druck (additive). CNC carves parts from solid plastic blocks, while 3D Printing builds them layer by layer from filaments or resin. Both make high-quality plastic parts, but their strengths—like precision, Geschwindigkeit, and cost—vary drastically based on your project’s needs. Dieser Leitfaden bricht ihre Unterschiede ab, Materialkompatibilität, reale Verwendungen, and how to pick the right one for your plastic fabrication goals.
Erste: What Are CNC Machining and 3D Printing for Plastic Fabrication?
Zwischen ihnen wählen, you need to understand their core processes—this explains why they excel at different tasks in plastic fabrication.
CNC -Bearbeitung: Subtractive Plastic Fabrication
CNC Machining is like sculpting: it starts with a solid block of plastic (Z.B., ABS, Nylon) and removes excess material using computer-controlled tools (Mühlen, Übungen, Drehmaschine). Here’s how it works for plastic parts:
- A plastic block is clamped to the CNC machine’s worktable.
- A CAD design is converted to G-code, which guides the machine’s tools.
- Scharf, Spezialwerkzeuge (often carbide) cut the plastic in precise passes—first rough cuts to shape the part, then fine cuts for accuracy.
- Compressed air cools the plastic (liquid coolant can warp soft plastics) and blows away plastic chips.
- The finished part is removed—no supports needed, thanks to the solid block.
Schlüsselmerkmal: Makes strong, isotropic parts (uniform strength in all directions) with tight tolerances—ideal for functional plastic components.
3D Druck: Additive Plastic Fabrication
3D Printing builds plastic parts layer by layer, no solid block required. The two most common 3D Printing processes for plastic fabrication are:
FDM (Modellierung der Ablagerung) – Filament-Based
- A spool of thermoplastic filament (Z.B., PLA, ABS) feeds into a heated nozzle (180–260 ° C.).
- The nozzle melts the filament and deposits it onto a build plate in thin layers (0.05–0,3 mm dick).
- Layers cool and bond together; the build plate lowers to add the next layer.
- Support structures are added for overhangs (angles >45°) and removed after printing.
Sls (Selektives Lasersintern) – Powder-Based
- A bed of nylon powder (Z.B., PA12) is spread evenly.
- A laser melts the powder into the shape of the part’s first layer.
- The bed lowers, fresh powder is added, and the laser repeats—no supports needed (loose powder acts as support).
- The part is cleaned of excess powder and post-cured for strength.
Schlüsselmerkmal: Makes complex shapes (Gitter, hohle Innenräume) that CNC can’t—great for prototyping and custom plastic parts.
CNC -Bearbeitung vs. 3D Druck: Plastic Fabrication Comparison
The table below compares the two processes across 9 critical factors for plastic fabrication—using data from industry studies and real-world quotes to help you decide:
Faktor | CNC -Bearbeitung (Plastik) | 3D Druck (FDM/SLS) |
Teilstärke | Hoch (isotrop, solid plastic) – ABS: 40–45 MPa tensile strength | Medium (anisotrop, Ebenenleitungen) – FDM ABS: 30–35 MPa tensile strength |
Toleranz | Eng (±0.025–0.1 mm) – ideal for precise fits | Looser (±0.1–0.3 mm) – SLS better than FDM |
Oberflächenbeschaffung | Glatt (3.2–0.4 μm) – ready to use | Rauh (FDM: 12.5–25 μm; Sls: 6.3–12.5 μm) – needs sanding |
Materialverschwendung | Hoch (50–70% of plastic block is cut away) | Niedrig (FDM: 10–20% waste; Sls: 50%+ powder reused) |
Batch Size Sweet Spot | 50+ Teile (fixed costs spread over volume) | 1–10 Teile (no setup fees) |
Vorlaufzeit (10 Teile) | 10–14 Tage (aufstellen + Schneiden) | 3–5 Tage (FDM); 4–6 Tage (Sls) |
Vorlaufzeit (100 Teile) | 14–21 days | 10–14 Tage (FDM); 12–16 days (Sls) |
Entwurfskomplexität | Beschränkt (no closed interiors/lattices) | Hoch (handles complex shapes for no extra cost) |
Per-Part Cost (ABS, 10 Teile) | \(25- )35 | \(18- )25 (FDM); \(22- )30 (Sls) |
Per-Part Cost (ABS, 100 Teile) | \(15- )20 | \(18- )25 (FDM); \(16- )22 (Sls) |
Materialkompatibilität: Which Plastics Work for Each Process?
Not all plastics are equally suited for CNC Machining or 3D Printing. The right choice depends on your part’s function (Z.B., Stärke, Wärmewiderstand) and the process’s capabilities.
Kunststofftyp | Schlüsselmerkmale | CNC Machining Suitability | 3D Printing Suitability | Beste Anwendungsfälle |
ABS | Wirkungsbeständig, hart, leicht zu verarbeiten | Excellent – makes durable enclosures/gears | Gut (FDM) – needs heated chamber | Electronics housings, Spielzeug |
Nylon (PA12) | Hohe Stärke, Tragenresistent | Excellent – ideal for mechanical parts | Exzellent (Sls) – no supports needed | Getriebe, Lager, Befestigungselemente |
PC (Polycarbonat) | Transparent, wirkungsbeständig, hitzebeständig | Good – careful cutting to avoid cracking | Gerecht (FDM) – needs closed chamber | Sicherheitsbrille, Fälle anzeigen |
Acetal (Pom) | Geringe Reibung, hohe Steifheit | Excellent – precise parts with smooth finish | Poor – hard to print without warping | Cams, Lager, medizinische Werkzeuge |
PLA | Niedrige Kosten, biologisch abbaubar, einfach zu drucken | Poor – too brittle for cutting | Exzellent (FDM) – fast prototyping | Prototypen, Dekorative Teile |
TPU | Flexibel, elastisch, Tränenfeindliche | Poor – soft plastic clogs tools | Exzellent (FDM/SLS) – makes grips/seals | Telefonkoffer, Dichtungen, Wearables |
Beispiel: A manufacturer needed flexible plastic grips for tools. CNC Machining couldn’t cut TPU without it deforming, so they used FDM 3D Printing. The grips cost \(3 jede (vs. \)8 for failed CNC attempts) and were ready in 2 Tage.
Real-World Plastic Fabrication Cases: CNC vs. 3D Druck
Numbers tell part of the story—but real projects show how these processes perform in practice. Hier sind 3 examples of plastic fabrication where the choice made a big difference.
Fall 1: Functional Gear Prototypes (CNC Wins for Strength)
A robotics company needed 10 ABS gear prototypes to test load-bearing performance.
- 3D Druck (FDM) Option: The gears had layer lines that weakened them—they broke after 50 rotations under load. Each gear cost \(20, gesamt \)200.
- CNC Machining Option: The solid ABS gears were isotropic—they lasted 500+ Rotationen. Each gear cost \(30, gesamt \)300.
Ergebnis: The company chose CNC—spent $100 more but got accurate data on gear performance, avoiding costly redesigns later.
Fall 2: Custom Lattice Drone Frame (3D Printing Wins for Complexity)
Ein Startup benötigt 5 lightweight nylon drone frames with a hollow lattice design (Gewicht reduzieren).
- CNC Machining Option: Impossible—CNC tools couldn’t reach the internal lattice structure. Even a simplified design would cost \(150 pro Rahmen, gesamt \)750.
- 3D Druck (Sls) Option: The lattice design was easy to print with nylon powder. Each frame cost \(40, gesamt \)200, und war 40% lighter than a solid CNC frame.
Ergebnis: The startup chose SLS—saved $550 and got the lightweight design critical for drone flight.
Fall 3: Medium-Batch Enclosures (MJF 3D Printing Balances Cost & Geschwindigkeit)
A tech brand needed 50 ABS enclosures for a new sensor.
- CNC Machining Option: Setup took 7 Tage, and each enclosure cost \(22, gesamt \)1,100. Vorlaufzeit: 14 Tage.
- 3D Druck (MJF) Option: No setup, each enclosure cost \(20, gesamt \)1,000. Vorlaufzeit: 7 Tage.
Ergebnis: The brand chose MJF—saved $100 and got enclosures 7 Tage schneller, meeting their product launch deadline.
How to Choose the Right Plastic Fabrication Process (Schritt für Schritt)
Folgen Sie diesen 4 steps to pick between CNC Machining and 3D Printing for your plastic project:
Schritt 1: Define Your Part’s Function
- Need strength/load-bearing (Z.B., Getriebe, Klammern): Choose CNC Machining (isotropic parts).
- Need complex shapes (Z.B., Gitter, hohle Teile): Choose 3D Printing (SLS/FDM).
- Need prototypes only (Keine Funktion): Choose FDM 3D Printing (billig, schnell).
Schritt 2: Check Your Batch Size
- 1–10 Teile: 3D Druck (FDM) ist billiger (no CNC setup fees).
- 10–50 Teile: 3D Druck (MJF/SLS) balances cost and speed.
- 50+ Teile: CNC Machining is cheaper (setup costs spread over volume).
Schritt 3: Prioritize Tolerance & Beenden
- Need tight tolerance (<± 0,1 mm) (Z.B., medizinische Teile): Choose CNC Machining.
- Need smooth finish (Kein Schleifen) (Z.B., Konsumgüter): Choose CNC Machining or SLS 3D Printing.
- Tolerance/finish not critical (Z.B., rough prototypes): Choose FDM 3D Printing.
Schritt 4: Berechnen Sie die Gesamtkosten
Total cost = upfront cost + (per-part cost × batch size). Use this example for ABS parts:
Chargengröße | CNC Machining Total Cost | FDM 3D Printing Total Cost |
10 Teile | \(200 (aufstellen) + \)30×10 = $500 | \(0 (aufstellen) + \)20×10 = $200 |
50 Teile | \(200 (aufstellen) + \)22×50 = $1,300 | \(0 (aufstellen) + \)20×50 = $1,000 |
100 Teile | \(200 (aufstellen) + \)18×100 = $2,000 | \(0 (aufstellen) + \)18×100 = $1,800 |
500 Teile | \(200 (aufstellen) + \)12×500 = $6,200 | \(0 (aufstellen) + \)18×500 = $9,000 |
Schlüssel zum Mitnehmen: CNC becomes cheaper than FDM at ~100 parts for most plastic fabrication projects.
Yigu Technology’s Perspective on CNC vs. 3D Printing for Plastic Fabrication
Bei Yigu Technology, we match plastic fabrication processes to our clients’ goals. For functional parts like gears or medical components, CNC machining delivers the strength and precision needed. For complex prototypes or small batches—like lattice drone frames—3D printing (SLS/MJF) is faster and more cost-effective. We also help with material selection: recommending ABS for CNC enclosures or TPU for 3D printed grips. Our team provides sample parts for both processes, so clients see the difference firsthand. Für uns, the best process isn’t one-size-fits-all—it’s the one that makes your plastic parts work, zuletzt, und passen Sie Ihr Budget an.
FAQ About CNC Machining vs. 3D Printing for Plastic Fabrication
1. Can 3D Printing make plastic parts as strong as CNC Machining?
No—CNC parts are isotropic (stark in alle Richtungen) because they’re cut from solid plastic. 3D printed parts have layer lines that make them weaker (Z.B., FDM ABS has 30% lower tensile strength than CNC ABS). Only use 3D printing for strength-critical parts if you can’t achieve the design with CNC.
2. Is CNC Machining worth it for small batches (unter 50 Teile)?
Rarely—unless you need tight tolerance or strength. Für 50 ABS parts, CNC costs ~\(1,300 (aufstellen + Teile) vs. \)1,000 for MJF 3D printing. Only choose CNC for small batches if 3D printing can’t meet your part’s performance needs.
3. Which process is better for sustainable plastic fabrication?
3D Druck (especially SLS) is more sustainable. SLS reuses 50%+ of nylon powder, while CNC wastes 50–70% of plastic blocks. FDM also generates less waste than CNC, though it uses more energy than SLS. For eco-friendly projects, prioritize SLS 3D printing with recycled filaments.