CNC-Bearbeitung: Der vollständige Leitfaden zum Fräsprozess für Ingenieure

Silikon-Compound-Form

Wenn Sie Beschaffungsspezialist oder Produktingenieur sind, Sie wissen, dass die Wahl der richtigen Bearbeitungsmethode die Kosten Ihres Projekts steigern oder senken kann, Geschwindigkeit, und Qualität. Das CNC-Fräsen – ein zentraler Bestandteil der modernen CNC-Bearbeitung – ist eines der vielseitigsten subtraktiven Fertigungsverfahren, Wird verwendet, um alles von einfachen Halterungen bis hin zu komplexen Teilen für die Luft- und Raumfahrt herzustellen. Dieser Leitfaden […]

Wenn Sie Beschaffungsspezialist oder Produktingenieur sind, Sie wissen, dass die Wahl der richtigen Bearbeitungsmethode die Kosten Ihres Projekts steigern oder senken kann, Geschwindigkeit, und Qualität. CNC-Fräsen—a core part of modern CNC-Bearbeitung—is one of the most versatile subtractive manufacturing processes, Wird verwendet, um alles von einfachen Halterungen bis hin zu komplexen Teilen für die Luft- und Raumfahrt herzustellen. This guide breaks down the entire CNC milling process, from machine parts to real-world applications, so you can make informed decisions and avoid common pitfalls.

1. Was ist CNC-Fräsen?, and How Did It Evolve?

CNC-Fräsen is a subtractive manufacturing process where a computer-controlled cutting tool removes material from a workpiece to shape it into a desired design. Im Gegensatz zum manuellen Fräsen (which relied on machinists’ skill and was prone to errors), CNC (Computer-Numerische Steuerung) Mahlen uses preprogrammed code to ensure precision down to 0.025 mm—critical for industries like aerospace and automotive.

A Quick History Lesson

Before the 18th-century Industrial Revolution, manufacturing relied on manual casting—slow, tedious, and error-prone. By the 20th century, manual milling machines emerged, but they still depended on human control. The rise of digital technology changed everything: today’s CNC milling machines turn 3D designs into precise parts at high speeds, mit minimalem menschlichen Eingriff.

Real-World Example: Automotive Part Production

A leading car manufacturer once used manual milling to make engine brackets. Der Prozess dauerte 2 hours per bracket and had a 10% error rate (wasting $150 per failed part). After switching to CNC-Fräsen, they cut production time to 30 minutes per bracket and reduced errors to 0.5%—saving over $50,000 annually on material waste.

2. Key Parts of a CNC Milling Machine

To understand how CNC milling works, you need to know its core components. While machine parts vary by manufacturer and type, these six parts are found in every CNC mill:

  • Spindel: Holds the cutting tool in place and spins it at high speeds (up to thousands of RPM).
  • Control Panel: The computer interface where operators input programs and monitor the process.
  • Spalten: The main frame that supports other components, ensuring stability during machining.
  • Saddle Pieces: Attached to the columns, they hold and move the workbench.
  • Workbench: The surface where the workpiece is secured with clamps or vices.
  • Foundation: The base that keeps the entire machine stable on the floor, preventing vibration.

3. The Step-by-Step CNC Milling Workflow

CNC milling isn’t just “pressing a button”—it follows a structured 4-step process to ensure accuracy. So funktioniert es, with a real example from a medical device manufacturer:

Schritt 1: Design a 3D CAD Model

Erste, engineers create a 3D model of the part using CAD (Computergestütztes Design) Software (z.B., SolidWorks, AutoCAD). Every feature—from holes to slots—must be included. Zum Beispiel, a medical device company designed a titanium surgical screw in SolidWorks, adding details like thread depth and a rounded tip.

Schritt 2: Convert CAD to G-Code with CAM

CNC mills can’t read CAD files directly—they need G-Code (digital instructions for tool movement). NOCKEN (Computergestützte Fertigung) Software (z.B., Fusion 360 NOCKEN) converts the CAD model into G-Code. For the surgical screw, Fusion 360 CAM generated code that told the mill how fast to spin the tool and where to cut.

Schritt 3: Set Up the Milling Machine

Operators prepare the machine by:

  1. Securing the workpiece (Titan, in the medical example) to the workbench.
  2. Attaching the right cutting tool (a multi-flute end mill) to the spindle.
  3. Adding cutting fluid to cool the tool and workpiece.

Schritt 4: Perform the Milling

The machine runs the G-Code, and the cutting tool removes material. Depending on the mill type, either the tool moves, the workpiece moves, oder beides. For the surgical screw, the 5-axis CNC mill rotated the workpiece while the tool cut the threads—resulting in a precise part that met medical standards.

4. Critical CNC Milling Terminology You Need to Know

Understanding these terms will help you communicate with machinists and avoid misunderstandings:

  • Cutting Tool: The detachable part that cuts material (z.B., end mills for flat surfaces). Choose tools based on the workpiece material—aluminum needs a different tool than steel.
  • Geschwindigkeit (U/min): How fast the tool spins (measured in revolutions per minute). Aluminum can be milled at 3,000 U/min, while steel needs slower speeds (1,500 U/min) to prevent tool wear.
  • Füttern: The distance the tool or workpiece moves per revolution. A higher feed (z.B., 100 mm/min for aluminum) beschleunigt die Produktion, but a lower feed (50 mm/min for steel) sorgt für Präzision.
  • Depth of Cut: How far the tool penetrates the workpiece. A deeper cut (z.B., 5 mm) removes more material but may require more power.
  • Cutting Fluid: A liquid that cools the tool and workpiece, reducing friction and extending tool life.

5. Types of CNC Milling Machines: 3-Axis vs. 5-Achse

The number of axes a mill has determines its capabilities. Below is a comparison of the two most popular types:

Besonderheit3-Achse CNC-Fräse5-Achse CNC-Fräse
Axes MovementX (links rechts), Y (front/back), Z (hoch/runter)X, Y, Z + 2 Rotationsachsen (A, B, oder C)
Workpiece RepositioningRequires manual repositioningNo manual repositioning needed
Am besten fürEinfache Teile (z.B., Klammern, Unterlegscheiben)Komplexe Teile (z.B., Luft- und Raumfahrtkomponenten, chirurgische Instrumente)
Cost Per Part$5–50 $$30–$200 (60–100% higher than 3-axis)
GenauigkeitHoch (Toleranz: 0.05 mm)Very high (Toleranz: 0.025 mm)
OberflächenbeschaffenheitGut (some tool marks)Exzellent (no tool marks)

Beispiel: Aerospace Part Production

An aerospace company needed to make a complex turbine blade. A 3-axis mill would have required 3 manual repositionings (increasing error risk), but a 5-axis mill produced the blade in one run—saving 4 hours per part and improving accuracy by 50%.

6. Materials Suitable for CNC Milling

CNC milling works with over 50 engineering materials. The table below highlights common options and their uses:

MaterialtypBeispieleSchlüsseleigenschaftenAm besten für
MetalleAluminium, Stahl, TitanStark, hitzebeständigAutomobilteile, Luft- und Raumfahrtkomponenten
KunststoffeABS, SPÄHEN, PolycarbonatLeicht, niedrige KostenKonsumgüter, medizinische Geräte
AndereHolz, Glas, elastomersVielseitig, leicht zu bearbeitenPrototypen, dekorative Teile

Pro Tip for Procurement Specialists

Choose aluminum for low-cost, leichte Teile (z.B., Unterhaltungselektronik). For high-stress parts (z.B., Motorkomponenten), use steel or titanium—even though they cost more, they last longer and reduce maintenance costs.

7. Advantages and Limitations of CNC Milling

Vorteile

  • Skalierbarkeit: Works for 1-off prototypes or mass production (10,000+ Teile). Costs decrease as production volume increases—producing 1,000 brackets costs 30% less per unit than producing 100.
  • Schnelle Abwicklung: CAD/CAM integration cuts lead times. A prototype that took 1 week with manual milling can be done in 1 day with CNC.
  • Präzision: Tolerances as tight as 0.025 mm meet strict industry standards (z.B., Luft- und Raumfahrt, medizinisch).
  • Vielseitigkeit: Can create holes, Slots, Threads, und gekrümmte Oberflächen.

Einschränkungen

  • Complex Geometry Costs: More material removal means higher costs. A part with deep cavities may cost 50% more than a simple flat part.
  • Tool Access Restrictions: The workpiece holder can block the tool—requiring manual repositioning (increasing time and error risk).
  • Unmillable Features: Curved holes, straight inner edges, and walls thinner than 0.5 mm can’t be milled (use laser cutting or EDM instead).
  • Materialverschwendung: Subtractive manufacturing produces scrap—up to 30% of the workpiece for complex parts.

8. Yigu Technology’s Perspective on CNC Milling

Bei Yigu Technology, we help manufacturers optimize their CNC milling processes. We recommend 3-axis mills for simple, Großserienteile (z.B., Kfz-Halterungen) um die Kosten niedrig zu halten. Für komplexe Teile (z.B., medizinische Werkzeuge), 5-axis mills are worth the investment—they reduce rework and improve quality. We also advise clients to use cutting fluids tailored to their material (z.B., oil-based fluids for steel) to extend tool life by 25%. For procurement teams, partnering with suppliers who offer both 3-axis and 5-axis milling ensures flexibility for all project needs.

FAQ

1. Can CNC milling produce parts with curved holes?

NEIN, CNC milling can’t create curved holes—this is a key limitation. For curved holes, use alternative methods like laser drilling or electrical discharge machining (EDM), which can handle complex geometries that mills can’t.

2. How do I choose between a 3-axis and 5-axis mill for my project?

Choose a 3-axis mill if your part is simple (no curved surfaces needing multi-angle cuts) and you need high volume at low cost. Choose a 5-axis mill if your part is complex (z.B., Luft- und Raumfahrtkomponenten) and requires tight tolerances—even though it’s more expensive, it saves time on repositioning and reduces errors.

3. What’s the most cost-effective material for CNC milling?

Aluminum is the most cost-effective option for most projects. It’s cheap (um $2 pro kg), easy to mill (fast speeds and feeds), and produces less tool wear (lower tool replacement costs). For parts needing strength, steel is a good alternative—though it costs more ($5 pro kg), it’s more durable than aluminum.

Index
Scrollen Sie nach oben