CNC-Biegebearbeitungsprozess: Eine Schritt-für-Schritt-Anleitung für präzise Blechbearbeitung

CNC-Laserschneiden

In der Blechfertigung, konsequent erreichen, Genaue Biegungen sind von entscheidender Bedeutung – doch beim traditionellen manuellen Biegen kommt es häufig zu menschlichen Fehlern, inkonsistente Winkel, und langsamer Durchsatz. Der CNC-Biegebearbeitungsprozess löst diese Probleme, indem er computergesteuerte Präzision mit automatisiertem Betrieb kombiniert, Damit ist es ideal für Massenteile geeignet (wie Kfz-Halterungen) und kundenspezifische Komponenten (wie zum Beispiel Schaltschränke). […]

In der Blechfertigung, konsequent erreichen, Genaue Biegungen sind von entscheidender Bedeutung – doch beim traditionellen manuellen Biegen kommt es häufig zu menschlichen Fehlern, inkonsistente Winkel, und langsamer Durchsatz. Der CNC bending machining process solves these pain points by combining computer-controlled precision with automated operation, Damit ist es ideal für Massenteile geeignet (wie Kfz-Halterungen) und kundenspezifische Komponenten (wie zum Beispiel Schaltschränke). Whether you’re a production manager aiming to reduce scrap rates or a technician learning to optimize setup, this guide breaks down the CNC bending process, gemeinsame Herausforderungen, and solutions to ensure high-quality results.

1. What Is the CNC Bending Machining Process? Core Definition & Hauptvorteile

Before diving into steps, let’s clarify what makes CNC bending different from traditional methods:

Key Definition

Der CNC bending machining process is a computer-controlled manufacturing technique that uses a press brake to bend sheet metal (z.B., Stahl, Aluminium) into predefined shapes. It relies on 3D CAD designs and CAM-generated programs to automate critical parameters—including bending sequence, angle, Druck, and tool positioning—eliminating manual guesswork.

Why Choose CNC Bending Over Manual Bending?

A side-by-side comparison highlights the efficiency and precision benefits:

AspectCNC-BiegebearbeitungsprozessTraditional Manual Bending
Präzision±0.1° angle accuracy; consistent across 1000+ Teile±1° angle variation; hängt von den Fähigkeiten des Bedieners ab
Production Speed10–15 bends per minute (für Kleinteile)2–3 bends per minute; slows with complex designs
Ausschussrate2–5 % (due to automated checks)10–15 % (due to human error)
Umgang mit KomplexitätEasily handles 5+ bend sequences (z.B., box-shaped parts)Struggles with 3+ Kurven; risk of misalignment

2. Step-by-Step Breakdown of the CNC Bending Machining Process

The CNC bending process follows a linear, repeatable workflow—from design to inspection. Each step builds on the previous one to ensure accuracy:

Schritt 1: Design & Programmierung

This foundational step sets the stage for error-free bending:

  1. CAD-Design: Use software (z.B., SolidWorks, AutoCAD) to create 2D/3D drawings of the bent part. Critical details include:
  • Final bend angles (z.B., 90°, 45°)
  • Material thickness (z.B., 2mm aluminum)
  • Bend radius (to avoid material cracking)
  1. CAM-Programmierung: Import the CAD file into CAM software (z.B., Mastercam, SolidWorks CAM) to generate the press brake program. The software calculates:
  • Bending sequence (order of bends to avoid tool collisions—e.g., bend the innermost angles first)
  • Press force (z.B., 50 kN for 2mm steel)
  • Tool selection (matching upper/lower dies to the part’s shape)

Pro Tip: Always add a “flat pattern” to the CAD file—this shows the unbent sheet metal size, which is critical for cutting.

Schritt 2: Materialvorbereitung

Using the wrong material or size leads to failed bends. Follow these steps:

  1. Materialauswahl: Choose metal based on part requirements:
  • Steel plates (z.B., Q235): For high-strength parts (z.B., Maschinenrahmen)
  • Aluminum plates (z.B., 6061): For lightweight parts (z.B., Automobilverkleidung)
  • Edelstahl (z.B., 304): For corrosion-resistant parts (z.B., food industry equipment)
  1. Schneiden: Use CNC shearing or laser cutting to trim large material into “blanks” (sheets matching the flat pattern size). Zum Beispiel:
  • A 200mm × 150mm blank for a 100mm × 50mm × 50mm box part.

Schritt 3: Maschineneinrichtung & Mold Installation

Incorrect setup is the #1 cause of oversized or misshapen parts. Here’s how to avoid it:

  1. Die Selection: Match upper (punch) and lower (sterben) dies to the part’s bend radius:
  • Use a 3mm radius die for 2mm aluminum (verhindert Rissbildung)
  • Use a V-shaped die (z.B., 8mm V-width) for 90° bends
  1. Die Installation: Mount dies on the press brake’s upper ram (punch) and lower table (sterben). Secure them with clamps to avoid movement during bending.
  2. Maschinenkalibrierung: Adjust press brake parameters via the CNC control panel:
  • Druck: Set to 40 kN for 1.5mm steel (too much pressure crushes the material; too little leaves incomplete bends)
  • Geschwindigkeit: 5–10 mm/s (faster speeds risk vibration; slower speeds reduce efficiency)
  • Backgauge position: Align the backgauge (a stop that positions the blank) to the first bend’s location (z.B., 50mm from the die edge).

Schritt 4: CNC Bending Execution

This is the automated phase—but operator supervision is still key:

  1. Part Positioning: Place the cut blank on the press brake table. The backgauge pushes the blank to the correct position (no manual measuring needed).
  2. Program Start: Press “run” on the CNC panel. The press brake:
  • Lowers the upper die (punch) to contact the blank
  • Applies the preset pressure to bend the material
  • Retracts the punch to release the bent part
  1. In-Process Check: After the first 2–3 parts, measure angles with a protractor to confirm accuracy. If off by 0.5°, adjust the CNC program’s angle offset.

Schritt 5: Post-Treatment & Qualitätsprüfung

Even a perfectly bent part needs finishing and verification:

  1. Entgraten: Use a file or sanding tool to remove sharp edges from bend points (prevents injury and improves part fit).
  2. Qualitätsprüfung: Check key dimensions against the CAD file:
  • Bend angle (use a digital protractor for ±0.05° accuracy)
  • Part size (z.B., 100mm × 50mm for the box part)
  • Surface quality (no cracks, dents, or material deformation)

Beispiel: A manufacturer producing 1,000 aluminum electrical enclosures followed this process—scrap rate dropped from 12% (manual bending) Zu 3%, and production time was cut by 60%.

3. Common Challenges in CNC Bending & How to Solve Them

Even with automation, issues can arise. Here’s how to troubleshoot:

HerausforderungUrsacheLösung
Bend Angle Too Small (z.B., 85° instead of 90°)Material elastic recovery (metal springs back after bending)Increase the programmed angle by 1–3° (z.B., program 92° for a 90° final bend)
Material Cracking at BendsBend radius too small; material too hardUse a larger die radius (z.B., 4mm instead of 2mm); anneal the material to reduce hardness
Part MisalignmentBackgauge not calibrated; die looseRecalibrate backgauge with a reference block; retighten die clamps
Press Brake VibrationSpeed too high; uneven material thicknessReduce bending speed to 3–5 mm/s; use a thickness gauge to sort material (z.B., separate 1.9mm and 2.1mm steel blanks)

4. Yigu Technology’s Perspective on CNC Bending Machining Process

Bei Yigu Technology, we’ve supported 250+ sheet metal manufacturers in optimizing their CNC bending machining process. From our experience, 70% of inefficiencies come from outdated programming or poor setup. Unser Yigu CNC Press Brakes feature auto-calibration (cuts setup time by 40%) and integrated CAM software (preloads 1000+ bend parameters for common materials). For small shops, our training program teaches operators to reduce scrap rates to <5%—a client making automotive brackets saw a 50% productivity boost after 1 week of training. We also offer custom die sets for complex parts (z.B., curved bends), ensuring clients avoid tool-related delays.

FAQ: Common Questions About CNC Bending Machining Process

  1. Q: How do I calculate the right press force for CNC bending?

A: Use the formula: Force (kN) = Material Thickness (mm) × Material Width (mm) × Material Factor (z.B., 2.5 für Stahl, 1.5 für Aluminium). Zum Beispiel, 2mm steel × 100mm width × 2.5 = 500 kN. Most CNC press brakes have built-in calculators to simplify this.

  1. Q: Can CNC bending handle thin materials (z.B., 0.5mm aluminum)?

A: Yes—but use a low-pressure setting (20–30 kN) and a narrow V-die (4mm Breite) to avoid material warping. Also, add a “hold time” (1–2 seconds) in the program to let the material set before releasing.

  1. Q: How often should I maintain a CNC press brake for bending?

A: Daily: Clean die surfaces and check clamp tightness. Weekly: Lubricate backgauge rails and calibrate pressure. Monthly: Inspect die wear (replace if edges are chipped) and test emergency stops. Following this schedule extends machine life by 3–5 years.

Index
Scrollen Sie nach oben