In der Blechfertigung, konsequent erreichen, Genaue Biegungen sind von entscheidender Bedeutung – doch beim traditionellen manuellen Biegen kommt es häufig zu menschlichen Fehlern, inkonsistente Winkel, und langsamer Durchsatz. Der CNC bending machining process solves these pain points by combining computer-controlled precision with automated operation, Damit ist es ideal für Massenteile geeignet (wie Kfz-Halterungen) und kundenspezifische Komponenten (wie zum Beispiel Schaltschränke). Whether you’re a production manager aiming to reduce scrap rates or a technician learning to optimize setup, this guide breaks down the CNC bending process, gemeinsame Herausforderungen, and solutions to ensure high-quality results.
1. What Is the CNC Bending Machining Process? Core Definition & Hauptvorteile
Before diving into steps, let’s clarify what makes CNC bending different from traditional methods:
Key Definition
Der CNC bending machining process is a computer-controlled manufacturing technique that uses a press brake to bend sheet metal (z.B., Stahl, Aluminium) into predefined shapes. It relies on 3D CAD designs and CAM-generated programs to automate critical parameters—including bending sequence, angle, Druck, and tool positioning—eliminating manual guesswork.
Why Choose CNC Bending Over Manual Bending?
A side-by-side comparison highlights the efficiency and precision benefits:
| Aspect | CNC-Biegebearbeitungsprozess | Traditional Manual Bending |
| Präzision | ±0.1° angle accuracy; consistent across 1000+ Teile | ±1° angle variation; hängt von den Fähigkeiten des Bedieners ab |
| Production Speed | 10–15 bends per minute (für Kleinteile) | 2–3 bends per minute; slows with complex designs |
| Ausschussrate | 2–5 % (due to automated checks) | 10–15 % (due to human error) |
| Umgang mit Komplexität | Easily handles 5+ bend sequences (z.B., box-shaped parts) | Struggles with 3+ Kurven; risk of misalignment |
2. Step-by-Step Breakdown of the CNC Bending Machining Process
The CNC bending process follows a linear, repeatable workflow—from design to inspection. Each step builds on the previous one to ensure accuracy:
Schritt 1: Design & Programmierung
This foundational step sets the stage for error-free bending:
- CAD-Design: Use software (z.B., SolidWorks, AutoCAD) to create 2D/3D drawings of the bent part. Critical details include:
- Final bend angles (z.B., 90°, 45°)
- Material thickness (z.B., 2mm aluminum)
- Bend radius (to avoid material cracking)
- CAM-Programmierung: Import the CAD file into CAM software (z.B., Mastercam, SolidWorks CAM) to generate the press brake program. The software calculates:
- Bending sequence (order of bends to avoid tool collisions—e.g., bend the innermost angles first)
- Press force (z.B., 50 kN for 2mm steel)
- Tool selection (matching upper/lower dies to the part’s shape)
Pro Tip: Always add a “flat pattern” to the CAD file—this shows the unbent sheet metal size, which is critical for cutting.
Schritt 2: Materialvorbereitung
Using the wrong material or size leads to failed bends. Follow these steps:
- Materialauswahl: Choose metal based on part requirements:
- Steel plates (z.B., Q235): For high-strength parts (z.B., Maschinenrahmen)
- Aluminum plates (z.B., 6061): For lightweight parts (z.B., Automobilverkleidung)
- Edelstahl (z.B., 304): For corrosion-resistant parts (z.B., food industry equipment)
- Schneiden: Use CNC shearing or laser cutting to trim large material into “blanks” (sheets matching the flat pattern size). Zum Beispiel:
- A 200mm × 150mm blank for a 100mm × 50mm × 50mm box part.
Schritt 3: Maschineneinrichtung & Mold Installation
Incorrect setup is the #1 cause of oversized or misshapen parts. Here’s how to avoid it:
- Die Selection: Match upper (punch) and lower (sterben) dies to the part’s bend radius:
- Use a 3mm radius die for 2mm aluminum (verhindert Rissbildung)
- Use a V-shaped die (z.B., 8mm V-width) for 90° bends
- Die Installation: Mount dies on the press brake’s upper ram (punch) and lower table (sterben). Secure them with clamps to avoid movement during bending.
- Maschinenkalibrierung: Adjust press brake parameters via the CNC control panel:
- Druck: Set to 40 kN for 1.5mm steel (too much pressure crushes the material; too little leaves incomplete bends)
- Geschwindigkeit: 5–10 mm/s (faster speeds risk vibration; slower speeds reduce efficiency)
- Backgauge position: Align the backgauge (a stop that positions the blank) to the first bend’s location (z.B., 50mm from the die edge).
Schritt 4: CNC Bending Execution
This is the automated phase—but operator supervision is still key:
- Part Positioning: Place the cut blank on the press brake table. The backgauge pushes the blank to the correct position (no manual measuring needed).
- Program Start: Press “run” on the CNC panel. The press brake:
- Lowers the upper die (punch) to contact the blank
- Applies the preset pressure to bend the material
- Retracts the punch to release the bent part
- In-Process Check: After the first 2–3 parts, measure angles with a protractor to confirm accuracy. If off by 0.5°, adjust the CNC program’s angle offset.
Schritt 5: Post-Treatment & Qualitätsprüfung
Even a perfectly bent part needs finishing and verification:
- Entgraten: Use a file or sanding tool to remove sharp edges from bend points (prevents injury and improves part fit).
- Qualitätsprüfung: Check key dimensions against the CAD file:
- Bend angle (use a digital protractor for ±0.05° accuracy)
- Part size (z.B., 100mm × 50mm for the box part)
- Surface quality (no cracks, dents, or material deformation)
Beispiel: A manufacturer producing 1,000 aluminum electrical enclosures followed this process—scrap rate dropped from 12% (manual bending) Zu 3%, and production time was cut by 60%.
3. Common Challenges in CNC Bending & How to Solve Them
Even with automation, issues can arise. Here’s how to troubleshoot:
| Herausforderung | Ursache | Lösung |
| Bend Angle Too Small (z.B., 85° instead of 90°) | Material elastic recovery (metal springs back after bending) | Increase the programmed angle by 1–3° (z.B., program 92° for a 90° final bend) |
| Material Cracking at Bends | Bend radius too small; material too hard | Use a larger die radius (z.B., 4mm instead of 2mm); anneal the material to reduce hardness |
| Part Misalignment | Backgauge not calibrated; die loose | Recalibrate backgauge with a reference block; retighten die clamps |
| Press Brake Vibration | Speed too high; uneven material thickness | Reduce bending speed to 3–5 mm/s; use a thickness gauge to sort material (z.B., separate 1.9mm and 2.1mm steel blanks) |
4. Yigu Technology’s Perspective on CNC Bending Machining Process
Bei Yigu Technology, we’ve supported 250+ sheet metal manufacturers in optimizing their CNC bending machining process. From our experience, 70% of inefficiencies come from outdated programming or poor setup. Unser Yigu CNC Press Brakes feature auto-calibration (cuts setup time by 40%) and integrated CAM software (preloads 1000+ bend parameters for common materials). For small shops, our training program teaches operators to reduce scrap rates to <5%—a client making automotive brackets saw a 50% productivity boost after 1 week of training. We also offer custom die sets for complex parts (z.B., curved bends), ensuring clients avoid tool-related delays.
FAQ: Common Questions About CNC Bending Machining Process
- Q: How do I calculate the right press force for CNC bending?
A: Use the formula: Force (kN) = Material Thickness (mm) × Material Width (mm) × Material Factor (z.B., 2.5 für Stahl, 1.5 für Aluminium). Zum Beispiel, 2mm steel × 100mm width × 2.5 = 500 kN. Most CNC press brakes have built-in calculators to simplify this.
- Q: Can CNC bending handle thin materials (z.B., 0.5mm aluminum)?
A: Yes—but use a low-pressure setting (20–30 kN) and a narrow V-die (4mm Breite) to avoid material warping. Also, add a “hold time” (1–2 seconds) in the program to let the material set before releasing.
- Q: How often should I maintain a CNC press brake for bending?
A: Daily: Clean die surfaces and check clamp tightness. Weekly: Lubricate backgauge rails and calibrate pressure. Monthly: Inspect die wear (replace if edges are chipped) and test emergency stops. Following this schedule extends machine life by 3–5 years.
