Classifications of CNC Machining: A Complete Guide for Industrial Selection

cnc broaching

In der modernen Fertigung, why do aerospace engineers choose 5-Achse CNC -Maschinen while a small workshop uses 3-axis models? The answer lies in understanding the classifications of CNC machining—a framework that groups CNC systems by their capabilities, Prozesse, und Anwendungsfälle. Choosing the wrong category leads to wasted costs, langsame Produktion, or failed parts. Dieser Artikel schlüsselt die auf 6 core classifications of CNC machining, ihre Schlüsselmerkmale, Anwendungen in der Praxis, und Auswahltipps, helping you match the right CNC solution to your project needs.

What Are the Core Classifications of CNC Machining?

CNC -Bearbeitung (Computer Numerical Control machining) uses automated systems to shape materials, but not all CNC setups are the same. The industry classifies CNC machining based on 6 kritische Faktoren: Verarbeitungstechnologie, machine tool movement, automation degree, number of axes (degrees of freedom), application field, and special functional designs. Each classification solves unique manufacturing challenges—for example, metal cutting CNC machines handle shafts and gears, while laser cutting systems process non-metallic materials like glass.

1. Classification by Processing Technology

This category groups CNC machining by the type of material and the method used to shape it. It’s the most fundamental classification, as it directly ties to the material you’re working with. The table below details the two main subcategories and their key methods:

Processing CategoryKey MethodsMaterialkompatibilitätIdeale Anwendungen
Metal Cutting ProcessingDrehen: Shapes rotating workpieces (Z.B., Wellen) to create outer circles, Stirnseiten. – Mahlen: Schneidet komplexe Formen (Slots, Löcher) with rotating tools. – Langweilig: Expands existing holes for higher accuracy. – Bohren: Creates through/blind holes with drill bits. – Reihenfolge: Finishes drilled holes to improve surface smoothness. – Klopfen: Adds internal threads to holes.Ferrous metals (Stahl, Eisen), Nichteisenmetalle (Aluminium, Kupfer, Titan).– Drehen: Automotive engine shafts, Fahrradpedale. – Mahlen: Schimmelpilzhöhlen, laptop chassis. – Bohren: Electronic enclosure mounting holes.
Non-Metallic Material ProcessingLaserschnitt: Uses high-energy lasers to melt/vaporize materials. – Wasserstrahlschneidung: Cuts with high-velocity water (plus abrasives for hard materials). – Elektrische Entladungsbearbeitung (EDM): Removes material via electrode-workpiece discharge (for conductive materials). – Ultrasonic Machining: Uses high-frequency vibrations + abrasives to shape brittle materials.Kunststoff (ABS, SPÄHEN), Glas, Keramik, Verbundwerkstoffe (Kohlefaser).– Laserschnitt: Acrylic signage, plastic packaging. – Wasserstrahlschneidung: Stone countertops, glass panels. – EDM: Carbide tooling, Schimmelpilzeinsätze. – Ultrasonic Machining: Ceramic medical implants, glass lenses.

2. Classification by Machine Tool Movement Mode

This classification focuses on how the CNC machine’s tool and workpiece move relative to each other. It determines the complexity of shapes you can produce—from simple holes to curved aerospace parts.

Movement ModeKey CapabilitiesGenauigkeitsniveauIdeale Anwendungen
Point Control MachinesOnly controls tool position (no continuous path); moves directly from one point to another.± 0,01 mm (position accuracy); no path control.Drilling machines (hole positioning), boring machines (single-hole expansion).
Linear Control MachinesMoves tool along straight paths (X, Y, Z Achsen) while cutting; supports constant feed rates.± 0,005 mm (linear accuracy); uniform surface finish.Simple milling machines (flat surface cutting), Drehmaschine (straight shaft turning).
Contour Control MachinesMoves tool along complex curved trajectories (Z.B., circles, parabolas); supports multi-axis linkage.± 0,003 mm (contour accuracy); handles 3D shapes.Multi-axis machining centers (aerospace wing parts), mold-making machines (curved cavities).

3. Classification by Degree of Automation

Automation level dictates how much human intervention is needed—critical for production volume and labor costs.

Automation LevelSchlüsselmerkmaleLabor RequirementIdeal Production Scale
Semi-Automatic CNC MachinesAutomates cutting/machining but needs manual steps (Z.B., workpiece clamping, Werkzeugänderungen).1 operator per machine; constant supervision for manual tasks.Kleine Chargen (10–50 Teile), custom prototypes (Z.B., one-off mold inserts).
Fully Automatic CNC MachinesHandles the entire process automatically: auto loading/unloading, auto tool change, auto quality checks.1 operator manages 2–3 machines; minimal supervision.Produktion mit hoher Volumen (1,000+ Teile), mass manufacturing (Z.B., Automobilkomponenten).

4. Classification by Degrees of Freedom (Anzahl der Achsen)

The number of axes (linear + rotary) determines the machine’s ability to access complex part geometries. This is the most widely used classification for industrial CNC selection.

Anzahl der AchsenKey Axes ConfigurationCapabilitiesIdeal Industries/Parts
3-Achse CNC -Maschinen3 linear axes (X, Y, Z); tool moves along these axes to cut fixed workpieces.Handles 2D/3D parts with simple geometries; no undercutting or complex curves.Allgemeine Fertigung (Klammern, simple gears), Konsumgüter (Plastikgehäuse).
4-Achse CNC -Maschinen3 linear axes + 1 rotary axis (Z.B., A-Achse: rotates around X-axis).Accesses side/angled features; reduces workpiece repositioning by 50%.Luft- und Raumfahrt (simple engine parts), medizinisch (bone screws with angled holes).
5-Achse CNC -Maschinen3 linear axes + 2 rotary axes (Z.B., A + B axes); tool can tilt/rotate freely.Machines complex 3D surfaces (Z.B., Turbinenklingen) in one setup.Luft- und Raumfahrt (Jet Engine -Komponenten), Schimmel & sterben (deep cavities with undercuts), luxury automotive (curved body panels).

5. Classification by Application Field

CNC machines are often tailored to specific industries—optimized for their unique materials and part requirements.

AnwendungsfeldMachine FeaturesMaterial FocusBeispielteile
General-Purpose CNC MachinesVielseitig; works with multiple materials and part types; easy to reconfigure.Metalle, Kunststoff, Verbundwerkstoffe.Allgemeine Maschinerie (Getriebe), Möbelhardware (Scharniere), elektronische Klammern.
Specialized CNC MachinesCustomized for industry-specific needs (Z.B., Hochtemperaturbeständigkeit, kleiner Teil Präzision).Industry-specific materials (Z.B., titanium for aerospace, food-grade stainless steel for medical).– Automobil: Engine block machining lines. – Medizinisch: Dental implant mills. – Luft- und Raumfahrt: Titanium component lathes.

6. Other Special Classifications

These include machines with unique, combined functions—designed to solve niche manufacturing challenges.

Special TypeSchlüsselfunktionenSchlüsselvorteilIdeale Anwendungsfälle
Multi-Processing MachinesCombines 2+ machining types (Z.B., drehen + Mahlen, Bohren + Laserschnitt) in one machine.Eliminates workpiece transfer between machines; verkürzt die Produktionszeit durch 40%.Complex parts needing multiple processes (Z.B., automotive shafts with milled slots, medical tools with drilled holes + threaded ends).
Micromachining MachinesFocuses on ultra-small parts/features; achieves nanometer-level resolution.Processes parts as small as 0.1mm (Z.B., microelectronic components); hohe Präzision (±0.0001mm).Microelectronics (semiconductor chips), Medizinprodukte (micro-needles), Luft- und Raumfahrt (Mikrosensoren).

How to Choose the Right CNC Machining Classification?

Follow this 4-step process to avoid mismatched selections:

  1. Define Material & Geometrie:
  • If working with metal shafts → Metal cutting (drehen) + 3-Achse CNC.
  • If making complex aerospace turbine blades → Contour control + 5-Achse CNC.
  1. Match Automation to Volume:
  • Kleine Chargen (10 Teile) → Semi-automatic CNC.
  • Massenproduktion (10,000 Teile) → Fully automatic CNC.
  1. Consider Budget & ROI:
  • 5-axis machines cost 2–3x more than 3-axis models—only invest if complex parts justify the expense.
  1. Test mit Prototypen:
  • For high-stakes projects (Z.B., Medizinische Implantate), run a prototype on the chosen CNC type to validate accuracy and efficiency.

Perspektive der Yigu -Technologie

Bei Yigu Technology, we believe understanding classifications of CNC machining is the first step to smart manufacturing. Our product line covers all key classifications: 3/4/5-axis CNC machines for metal cutting, fully automatic lines for high-volume production, and specialized micromachining systems for microelectronics. We help clients select the right category by analyzing their material, Volumen, and geometry needs—for example, a automotive supplier switched from 3-axis to 5-axis machines, cutting part rework by 60%. As Industry 4.0 advances, we’re integrating AI into all classifications to auto-optimize tool paths, making CNC selection and operation even more accessible.

FAQ

  1. Q: Can a 5-axis CNC machine replace a 3-axis machine for simple parts?

A: Technisch ja ja, Aber es ist nicht kostengünstig. 5-axis machines have higher upfront costs (2–3x more) and longer setup times for simple parts. Stick to 3-axis machines for brackets, Getriebe, or enclosures to save money.

  1. Q: Which CNC classification is best for non-metallic materials like glass?

A: Non-metallic material processing—specifically ultrasonic machining (for brittle glass) or laser cutting (for precise glass panels). Avoid metal cutting CNC machines, as they’ll crack or shatter glass.

  1. Q: How much more productive is a fully automatic CNC machine vs. a semi-automatic one?

A: Fully automatic machines are 2–3x more productive. Zum Beispiel, a semi-automatic CNC makes 50 Teile/Tag (with operator breaks), while a fully automatic one makes 120–150 parts/day (24/7 operation with minimal labor).

Index
Scrollen Sie nach oben