Lichthärtend (einschließlich SLA und DLP) und FDM (Modellierung der Ablagerung) sind zwei der beliebtesten 3D Drucktechnologien, aber sie zeichnen sich in ganz anderen Szenarien aus. Es ist falsch, sie allgemein als „besser“ zu bezeichnen – ihr Wert hängt von den Präzisionsanforderungen Ihres Projekts ab, Budget, Materialanforderungen, und Anwendung. This article compares their core traits, Leistung, and use cases to help you pick the right technology.
1. Kernprinzipien & Schlüsselunterschiede (Side-by-Side Table)
The first step to choosing is understanding how each technology works. Below is a breakdown of their fundamental differences:
Aspekt | Lichthärtend (SLA/DLP) | FDM (Modellierung der Ablagerung) |
Technologieart | Photopolymer-based 3D printing | Thermoplastic-based 3D printing |
Kernprinzip | Verwendung Ultraviolett (UV) Licht Flüssigkeit heilen Photoempfindliches Harz layer by layer into solid shapes. | Schmilzt Thermoplastische Filamente (Z.B., PLA, ABS) via a heated nozzle, then extrudes and stacks the material layer by layer. |
Schlüsselkomponenten | Resin tank, UV light source (laser for SLA, projector for DLP), Plattform erstellen | Filament spool, heated nozzle (180–260 ° C.), heated bed, Plattform erstellen |
Support Structure | Erfordert removable support structures (for overhangs/hollows) – post-processing needed to remove. | May need supports (for steep overhangs) but often uses less support material than light curing. |
2. Critical Performance Metrics (Detaillierter Vergleich)
To evaluate which fits your project, compare their performance across key metrics:
Metrisch | Lichthärtend (SLA/DLP) | FDM (Modellierung der Ablagerung) |
Präzision & Detail | Exzellent – Layer thickness as low as 0.025mm (SLA); produces smooth surfaces with fine details (Z.B., tiny engravings, dünne Wände). Ideal for intricate models like jewelry or dental crowns. | Mäßig – Layer thickness usually 0.1mm–0.3mm; visible layer lines on the surface. Complex details (Z.B., kleine Löcher, thin features) may delaminate or collapse. |
Materialoptionen | Limited to Photoempfindliche Harze (Z.B., Allgemeinzweck, transparent, Hochtemperaturbeständig, flexibel). Resins are specialized and costly. | Wide range of Thermoplastik (Z.B., PLA, ABS, Petg, TPU). Materials are affordable, easy to store, und weit verbreitet. |
Druckgeschwindigkeit | Fast for small models – Single layers cure in Sekunden (DLP is faster than SLA). Large models may need layer stitching, was die Zeit hinzufügt. | Slow – Even small parts take 3–8 Stunden; large models (Z.B., a 30cm tall prototype) kann nehmen 24+ Std.. Speed drops further for high-precision prints. |
Nachbearbeitung | Complex – Requires: 1. Rinsing with alcohol to remove uncured resin; 2. Secondary UV curing to harden parts; 3. Sanding/polishing to remove support marks. | Simple – Minimal processing needed. May require: 1. Trimming support material; 2. Light sanding to smooth layer lines (optional). |
Kosten | High – Printers cost \(1,000- )10,000+ (DLP is pricier than SLA); Harzkosten \(50- )200 pro Liter. Wartung (resin tank cleaning, Filterwechsel) adds expense. | Low – Entry-level printers cost \(200- )800 (Z.B., Creality Ender series); filaments cost \(20- )50 pro kg. Maintenance is simple (nozzle cleaning, bed leveling). |
Mechanische Stärke | Moderate to high – Engineering resins (Z.B., tough resin) match the strength of injection-molded parts. Standard resins are brittle. | Moderate – PLA is rigid but brittle; ABS/PETG offer better impact resistance. Parts have good layer adhesion but lower strength than metal. |
3. Ideale Anwendungsszenarien
Use this guide to match each technology to your project goals:
3.1 When to Choose Light Curing (SLA/DLP)
- Hochpräzise, Intricate Parts: Projects needing fine details or smooth surfaces, wie zum Beispiel:
- Jewelry prototypes (tiny engravings, complex patterns).
- Zahnmodelle (accurate tooth shapes for crowns/bridges).
- Transparent/translucent parts (Z.B., light covers, lens prototypes).
- Ästhetische Prototypen: Products where appearance matters (Z.B., Unterhaltungselektronikgehäuse, toy designs).
- Small-Scale Production: Low-volume runs of detailed parts (no need for mass manufacturing molds).
3.2 When to Choose FDM
- Funktionelle Prototypen: Parts needing basic strength, wie zum Beispiel:
- Mechanische Komponenten (Getriebe, Klammern, Scharniere).
- Bildungsmodelle (Z.B., 3D anatomy models for schools).
- Maker projects (Z.B., custom phone stands, 3D-printed tools).
- Large-Size Models: Projects too big for light curing printers (Z.B., Architekturmodelle, furniture prototypes).
- Budget-Conscious Projects: Hobbyisten, Studenten, or startups with limited funds (low printer and material costs).
4. Sicherheit & Operation Considerations
Safety is often overlooked but critical for long-term use:
Aspekt | Lichthärtend (SLA/DLP) | FDM (Modellierung der Ablagerung) |
Sicherheitsrisiken | – Uncured resin is toxic and irritant (avoid skin/eye contact). – Resin fumes require Belüftung (use a fume hood or open windows). – UV light can damage eyes (wear protective goggles). | – Heated nozzle (200–260 ° C.) risks burns (keep hands away). – ABS printing releases harmful fumes (needs ventilation). – PLA ist ungiftig (safe for home use). |
Ease of Operation | Moderate – Resin handling requires care; platform leveling is less critical than FDM. | Easy for beginners – Simple setup (load filament, level bed); most printers have user-friendly software. Common issues (Z.B., Layer -Adhäsion) are easy to troubleshoot. |
5. Perspektive der Yigu -Technologie
Bei Yigu Technology, we believe the choice between light curing and FDM hinges on balancing precision, kosten, und Funktionalität. For clients needing high-detail prototypes (Z.B., dental labs, Schmuckdesigner), light curing (especially DLP) liefert unübertroffene Genauigkeit. For functional parts or budget-friendly projects (Z.B., startup prototypes, Bildungsmodelle), FDM is the practical choice. We often recommend combining both: Use FDM for large structural components, then light curing for small, detailed parts that attach to them. Unser Rat? Start by defining your non-negotiables—if “surface smoothness” or “detail” is top priority, light curing wins; if “cost” or “size” matters most, FDM is better.
6. FAQ (Häufig gestellte Fragen)
- Q: Can light curing 3D printers use FDM materials (Z.B., PLA)?
A: NEIN. Light curing printers only work with Photoempfindliches Harz (they rely on UV light to cure liquid resin, not heat to melt filaments). FDM materials are incompatible.
- Q: Is FDM suitable for making parts that need to withstand high temperatures?
A: Es hängt vom Material ab. Standard PLA melts at ~60°C (not heat-resistant), Aber ABS (schmilzt bei ~ 100 ° C.) oder Pei (melts at ~210°C) can handle moderate heat. For high-temperature needs (Z.B., Motorteile), light curing with high-temperature resin is better.
- Q: Which technology is better for beginners?
A: FDM ist ideal für Anfänger. Die Vorlaufkosten sind geringer, einfachere Bedienung (minimale Sicherheitsrisiken mit PLA), und einfachere Fehlerbehebung. Die Lichthärtung erfordert eine sorgfältige Handhabung des Harzes und eine komplexere Nachbearbeitung – besser für Benutzer mit etwas Erfahrung im 3D-Druck.