Our 4-Axis CNC Machining Services
Elevate your cylindrical and multi-sided part production with our 4-Achse CNC -Bearbeitungsdienste—the perfect blend of 3-axis precision and rotary axis (A/B Axis) Vielseitigkeit. Ideal for aerospace, Automobil, und medizinische Industrie, we deliver complex geometries (Getriebe, Wellen, Klammern) über Metalle hinweg (Titan, Edelstahl) und Nichtmetalle, with reduced setup time, konsistente Ergebnisse, and cost-effective solutions. Turn your multi-feature designs into high-quality parts—fast.

What Is 4-Axis CNC Machining?
4-Achse CNC -Bearbeitung is an advanced manufacturing Technologie that builds on 3-axis machining (X, Y, Z-Linearachsen) by adding a rotary axis (A or B Axis)—a rotating table that spins the workpiece around one of the linear axes. This extra axis lets the machine access multiple sides of a part in a single setup, eliminating the need for manual repositioning and unlocking more complex geometries than 3-axis systems.
Der Prozessübersicht ist einfach: A CNC (Computer numerische Steuerung) system interprets CAD designs to synchronize the linear axes (X/y/z, controlling the cutting tool) und die rotary axis (controlling the workpiece’s rotation). The two common rotary axis configurations are:
- A-Axis: Rotates the workpiece around the X-axis (ideal for long, cylindrical parts like shafts).
- B-Axis: Rotates the workpiece around the Y-axis (better for shorter, irregularly shaped parts like brackets with multi-sided features).
To explain “Wie es funktioniert” simply: Imagine a 3-axis machine that can spin your part like a rotisserie while cutting it. Zum Beispiel, when making a gear, the 4-axis machine cuts the gear teeth on the outer circumference as the rotary axis turns the part—all in one run, no need to stop and reposition. This is the core value of 4-Achse CNC -Bearbeitung: combining linear precision with rotational flexibility to streamline production of multi-sided parts.
Our 4-Axis CNC Machining Capabilities
We offer robust machining capabilities tailored to 4-axis systems, mit einem Fokus auf rotary table capabilities and precision for complex parts. Below is a detailed breakdown of our key capacities, einschließlich maximum part size, Materialstärke, Präzisionsniveaus, Benutzerdefinierte Bearbeitung, Und tolerance achievements:
Fähigkeit | Spezifikation |
Axes Configuration | 3 linear axes (X: 1200mm, Y: 800mm, Z: 600mm) + 1 rotary axis (A or B; 360° continuous rotation) |
Maximale Teilgröße | – Durchmesser: Up to 500mm (für zylindrische Teile)- Länge: Up to 1000mm (for shaft-like parts)- Gewicht: Up to 500kg (supported by heavy-duty rotary tables) |
Materialstärke | – Metalle: Up to 150mm (Edelstahl), 200mm (Aluminium), 100mm (Titan), 180mm (Messing)- Non-Metals: Up to 250mm (Kunststoff), 200mm (Verbundwerkstoffe), 150mm (Holz) |
Präzisionsniveaus | – Linear axes: ± 0,01 mm- Rotary axis: ±0.005° (angular precision) |
Benutzerdefinierte Bearbeitung | – Komplexe Merkmale: Slots, Löcher, chamfers on cylindrical surfaces- Kompatibilität: CAD/CAM files (DXF, DWG, SCHRITT, Stl)- Volumen: Prototypen (1–50 Einheiten) to high-volume (30,000+ Einheiten/Monat) |
Tolerance Achievements | Trifft ISO 2768-1 (feine Note); Kritische Teile (Z.B., aerospace shafts) achieve ±0.008mm linear tolerance and ±0.003° rotary tolerance |
Rotary Table Capabilities | – Geschwindigkeit: Bis zu 200 Drehzahl (Für Hochgeschwindigkeitsschnitte)- Clamping force: 8000N (secures heavy parts)- Indexing: 0.001° incremental steps (for precise positioning) |
Whether you need to machine a single titanium shaft or 10,000 brass gears, our 4-axis capabilities scale to match your project’s complexity and volume.
The 4-Axis CNC Machining Process
Unser Schritt-für-Schritt-Prozess is optimized to leverage the rotary axis for efficiency and precision, from design to finished part:
- Design and CAD Modeling: We start by reviewing your CAD model (or creating one from sketches). Our engineers focus on optimizing the design for 4-axis machining—e.g., ensuring features on cylindrical surfaces are aligned to the rotary axis to avoid unnecessary setups. Für Prototypen, we offer free design feedback to improve manufacturability.
- Cam -Programmierung: The CAD model is imported into CAM software (Mastercam, SolidWorks CAM), where we program Werkzeugpfade for both linear and rotary axes. We synchronize the rotary axis rotation with linear tool movements—for example, programming the A-axis to spin 90° while the Z-axis lowers the cutting tool to add a slot on a shaft’s side.
- Setup and Calibration: The workpiece is clamped to the rotary table (custom fixtures are used for irregular shapes). We calibrate the rotary axis using laser measuring tools to ensure alignment with linear axes (critical for precision). Schneidwerkzeuge (Z.B., Ende Mills, Übungen) are loaded, Und coolant systems are activated to prevent overheating.
- Bearbeitungsausführung: The CNC system runs the program, synchronizing linear (X/y/z) and rotary (A/B) movements. Zum Beispiel, when machining a gear, the rotary axis spins the part at a steady speed while the X/Y axes move the cutting tool to cut teeth. We monitor the process in real time to adjust speeds or coolant flow if needed.
- Post-Machining Inspection: Nach der Bearbeitung, parts undergo rigorous checks. Wir verwenden CMMs (Koordinatenmessmaschinen) to verify linear dimensions and angular measurements (for rotary axis features). Parts with rough edges move to Enttäuschung oder Schleifen for finishing.
Rotary Axis Integration Review: Für komplexe Teile, we review the rotary axis performance (Z.B., rotation smoothness, Positionierungsgenauigkeit) to refine future programs—ensuring consistent quality for repeat orders.
Materials We Work With
4-Achse CNC -Bearbeitung excels with both conductive and non-conductive materials, with particular strength in machining cylindrical or multi-sided parts. Below is a breakdown of our supported materials, ihre wichtigsten Eigenschaften, und ideale Verwendungen:
Materialkategorie | Beispiele | Schlüsseleigenschaften | Ideale Anwendungen | Machining Notes |
Metalle | Edelstahl | Korrosionsbeständig, stark | Medical instrument shafts, marine gears | Verwenden Sie Carbid -Werkzeuge; high-pressure coolant reduces heat |
| Aluminium | Leicht, Einfach zu maschine | Automobilaufhängungsteile, Luft- und Raumfahrtklammern | Schnelle Schnittgeschwindigkeiten; minimal tool wear |
| Titan | Hohe Kraft-Gewicht, hitzebeständig | Orthopedic implant stems, aircraft shafts | Langsame Geschwindigkeiten; sharp tools prevent tool wear |
| Messing | Formbar, leitfähig | Elektrische Anschlüsse, gear hubs | Fast speeds; produces smooth finishes |
| Kupfer | Highly conductive, soft | Wärmetauscherrohre, electrical terminals | Use coolant to avoid melting; sharp tools for clean cuts |
Non-Metals | Kunststoff (ABS/Polycarbonate) | Leicht, langlebig | Elektronikgehäuse (with side holes), prototype gears | Low speeds to prevent warping |
| Verbundwerkstoffe | Hohe Stärke, Leicht | Racing car drive shafts, Drohnenrahmen | Specialized carbide tools to avoid fiber fraying |
| Holz | Natural, kostengünstig | Custom furniture legs (turned designs), decorative columns | Sharp tools; vacuum fixtures secure parts |
We test all materials to optimize cutting speeds, Werkzeugauswahl, and coolant use—ensuring consistent results across every part.
Oberflächenbehandlung & OPTIONEN
Nach der Bearbeitung, Wir bieten eine Reihe von einer Reihe von Oberflächenbehandlung Und finishing options to enhance part durability, Aussehen, und Funktionalität. Our most popular services include:
- Schleifen: Schafft einen glatten, flat surface (ideal for shaft sealing surfaces that require tight fitment).
- Polieren: Delivers a glossy finish for visible parts (Z.B., stainless steel medical instruments, brass decorative gears).
- Malerei: Applies a corrosion-resistant coating (matte/gloss) für Außenteile (Z.B., automotive suspension components).
- Beschichtung: Options include powder coating (dick, kratzfest) for industrial parts and PVD coating (Tragenresistent) for tooling.
- Anodisierung: Adds a protective oxide layer to aluminum (available in custom colors) for aerospace or electronics parts.
- Wärmebehandlung: Strengthens metals (Z.B., Titanwellen, steel gears) by heating/cooling—improving hardness and fatigue resistance.
- Enttäuschung: Removes sharp edges (für die Sicherheit kritisch, Z.B., medical instrument shafts or electrical connectors).
The table below compares our finishing options by key factors:
Finishing Option | Haltbarkeit | Vorlaufzeit | Kosten (pro Teil, avg.) | Am besten für |
Grinding | Hoch | 1–2 Tage | 12–35 | Shaft sealing surfaces, gear teeth |
Polieren | Mittel | 2–3 Tage | 18–45 | Visible medical/aerospace parts |
Gemälde | Hoch | 2–4 Tage | 8–25 | Outdoor automotive/industrial parts |
Beschichtung (Pulver) | Sehr hoch | 3–5 Tage | 20–55 | Heavy-duty industrial gears |
Anodisierung | Sehr hoch | 3–4 Tage | 15–40 | Aluminum aerospace/electronics parts |
Wärmebehandlung | Sehr hoch | 4–6 Tage | 25–70 | Titanium shafts, steel gears |
Enttäuschung | Mittel | 1 day | 5–12 | Safety-critical parts (medical/electrical) |
Toleranzen & Qualitätssicherung
Toleranzen Und accuracy standards are critical for 4-axis parts—especially those with features on rotating surfaces (Z.B., Zahnradzähne, shaft holes). Unser Präzisionsniveaus Und Toleranzbereiche are tailored to your material and application, mit einem Fokus auf rotary axis precision:
Material | Linear Tolerance (X/y/z) | Rotary Axis Tolerance (A/B) | Accuracy Standard Used | Messtechnik |
Edelstahl | ± 0,01 mm | ±0.005° | ISO 2768-1 (Bußgeld), Asme Y14.5 | CMM + Angular Laser Scanner |
Aluminium | ± 0,015 mm | ±0.008° | ISO 2768-1 (Bußgeld), AMS 2750 | CMM + Digital Protractor |
Titan | ±0.012mm | ±0.006° | ISO 2768-1 (Bußgeld), AMS 4928 | CMM + Optischer Vergleicher |
ABS Plastic | ± 0,02 mm | ±0.01° | ISO 2768-1 (Medium), ASTM D638 | CMM + Mikrometer |
Verbundwerkstoffe | ±0.025mm | ±0.012° | ISO 1288-1, ASTM D3039 | CMM + Profilometer |
Unser quality control processes enthalten:
- Vorabbau: Inspecting raw materials for defects (Z.B., cracks in titanium, unevenness in composites) and verifying dimensions.
- In-Prozess: Überwachung rotary axis alignment and tool paths in real time via CNC software; periodic checks with calipers and protractors.
- Nach dem Maschinieren: 100% inspection with CMMs (for linear and angular dimensions); Kritische Teile (Z.B., aerospace shafts) undergo additional testing (Z.B., runout checks, fatigue tests).
Dokumentation: We provide a detailed quality report with every order, including linear/rotary tolerance data, Inspektionsergebnisse, and compliance certificates (ISO 9001, FDA für medizinische Teile).
Key Advantages of 4-Axis CNC Machining
Compared to 3-axis machining (which requires multiple setups for multi-sided parts) and 5-axis machining (which is more costly for simple complexity), 4-Achse CNC -Bearbeitung offers balanced benefits:
- Hohe Präzision: With linear tolerances as tight as ±0.01mm and rotary axis precision of ±0.005°, it produces parts that fit seamlessly—critical for gears, Wellen, and medical implants.
- Komplexe Geometrien: The rotary axis enables machining of features on cylindrical or multi-sided parts (Z.B., slots on a shaft, holes on a gear hub) that would require 2–3 setups with 3-axis systems.
- Reduzierte Setup -Zeit: One setup handles all sides of a part—cutting setup time by 50–70% compared to 3-axis machining. Für hochvolumige Bestellungen (Z.B., 10,000 Kfz -Teile), this translates to faster production.
- Increased Efficiency: Fewer setups mean less operator time and fewer errors (Z.B., misalignment from repositioning). Our clients report 30–40% faster production times for multi-sided parts.
- Vielseitigkeit: It works with all common metals and non-metals, and handles both simple (Klammern) und komplex (Getriebe) parts—making it a one-stop solution for diverse projects.
- Kosteneffizienz: More affordable than 5-axis machining (lower equipment and operational costs) while offering more capability than 3-axis. Reduced setup time and errors also lower labor and material waste costs.
- Consistency and Repeatability: CNC programming ensures every part is identical—critical for replacement parts (Z.B., aerospace shafts) or mass-produced components (Z.B., brass connectors).
Rotary Axis Benefits: The continuous rotation of the A/B axis enables high-speed machining of cylindrical parts (Z.B., Getriebe) and precise indexing for multi-sided features (Z.B., a bracket with holes on 4 Seiten).
Branchenanwendungen
4-Achse CNC -Bearbeitung is widely used across industries that need multi-sided or cylindrical parts. Hier sind die häufigsten Anwendungen:
Industrie | Gemeinsame Verwendungen | Key Benefit of 4-Axis Machining |
Luft- und Raumfahrt | Wellen, Turbinenkomponenten, brackets with side holes (aluminum/titanium) | Reduced setup time for high-precision parts |
Automobil | Getriebenaben, Suspensionsteile, Antriebswellen (steel/aluminum) | Consistency for mass production |
Medizinprodukte | Orthopedic implant stems, surgical tool shafts (titanium/stainless steel) | Precision for patient-specific fits |
Industrielle Fertigung | Förderrollen, Pumpwellen, Getriebe (steel/brass) | Versatility for diverse part types |
Elektronik | Steckerhäuser (Messing), heat sink brackets (Aluminium) | Ability to machine side holes in small parts |
Verteidigung | Waffenkomponenten, vehicle armor brackets (steel/titanium) | Durability and precision for critical parts |
Tool and Die Making | Mold cores with side features, die inserts (Stahl) | Complex geometry capability |
Prototyping | Rapid prototypes of gears, Wellen, and multi-sided brackets (plastics/aluminum) | Fast setup for low-volume runs |
Zum Beispiel, in der Automobilindustrie, our 4-axis machining produces 10,000 gear hubs monthly with consistent tooth spacing—thanks to the rotary axis’ precise indexing. In medical devices, we machine titanium implant stems with side slots (for bone screws) in one setup, ensuring patient-specific precision.
Fortgeschrittene Fertigungstechniken
To maximize the potential of 4-axis systems, Wir verwenden hochmoderne Bearbeitungstechniken and optimized processes:
- Mahlen: For multi-sided parts (Z.B., Klammern), we use “indexed milling”—programming the rotary axis to stop at specific angles (Z.B., 90°, 180°) to cut features on each side. Für zylindrische Teile (Z.B., Wellen), we use “continuous milling” (rotary axis spins non-stop) to cut grooves or threads.
Drehen: Combined with 4-axis capabilities, turning creates complex cylindrical parts (Z.B., Zahnradwellen) with both turned and milled features (Z.B., a shaft with a turned outer diameter and milled keyway). Der rotary axis spins the part during turning, while linear axes move the turning tool to shape the circumference.
- Drilling/Boring: For holes on cylindrical surfaces (Z.B., a gear hub with radial holes), we use “angular drilling”—programming the rotary axis to position the part at the exact angle (Z.B., 45°, 90°) before the Z-axis lowers the drill. This ensures holes are aligned perfectly with the part’s centerline.
- Werkzeugpfadoptimierung: CAM software helps us create efficient paths—for example, “trochoidal milling” (for hard metals like titanium) reduces tool wear by keeping the cutting tool in constant contact with the material, while “zig-zag paths” (für Aluminium) speed up cutting of large surfaces.
- Schneidwerkzeuge: We select tools based on material and feature type:
- Carbide End Mills: For milling steel, Titan, und Verbundwerkstoffe (dauerhaft, hitzebeständig).
- Hochgeschwindigkeitsstahl (HSS) Übungen: For brass, Kupfer, und Kunststoff (scharf, kostengünstig).
- Indexable turning inserts: For high-volume turning (replaceable cutting edges reduce downtime).
- Kühlmittelsysteme: We use two types of coolant for 4-axis machining:
- Flood coolant: Für hochvolumige Produktion (covers the part and tool to reduce heat buildup).
- Mist coolant: For precision work (Z.B., Medizinische Implantate) to avoid coolant residue on small features.
- Rotary Axis Operations: We offer two key rotary modes:
- Indexing: The rotary axis stops at fixed angles (Z.B., 0°, 90°, 180°) to machine features on each side—ideal for multi-sided brackets.
Continuous Rotation: The rotary axis spins non-stop (bis zu 200 Drehzahl) during cutting—perfect for cylindrical parts like gears or shafts.
Fallstudien: Erfolgsgeschichten
Unser 4-Achse CNC -Bearbeitungsdienste have helped clients across aerospace, Automobil, and medical industries solve complex production challenges. Unten sind zwei Erfolgreiche Projekte showcasing our expertise in leveraging the rotary axis for efficiency and precision:
Fallstudie 1: Automotive Gear Hub Manufacturer
- Herausforderung: Der Kunde benötigte 10,000 brass gear hubs monthly for electric vehicle transmissions. Each hub required a turned outer diameter, 6 radial holes (evenly spaced at 60°), and a milled keyway—all with a tolerance of ±0.01mm. Their previous supplier used 3-axis machining, which required 3 Setups (drehen, Bohren, Mahlen) und verursacht 8% of parts to fail due to misalignment (holes not centered on the hub). Lead time was 3 Wochen, which delayed their EV production.
- Lösung: Wir haben benutzt 4-Achse CNC -Bearbeitung with A-axis (rotary around X-axis) to complete the hub in one setup. Erste, we turned the outer diameter using continuous rotary rotation; Dann, we indexed the A-axis to 60° increments to drill the radial holes (ensuring perfect spacing); Endlich, we milled the keyway by synchronizing A-axis rotation with X/Y linear movement. We used carbide turning inserts and flood coolant to handle high-volume production, und optimiert Werkzeugpfade to cut each hub in 2 Minuten (unten von 5 minutes with 3-axis).
- Ergebnisse:
- Misalignment rate dropped from 8% to 0.5%—only 50 parts failed per month (vs. 800 previously).
- Lead time shortened from 3 Wochen zu 10 days—helping the client meet their EV assembly schedule.
- Production cost per hub decreased by 30% (reduced labor from fewer setups and faster cutting time).
- Client -Zeugnis: “The 4-axis machining transformed our gear hub production. One setup eliminated misalignment, and the faster speed let us keep up with EV demand. We’ve expanded our order to 15,000 hubs monthly!” — Lisa M., Automotive Production Manager.
- Before and After: 3-axis hubs had uneven hole spacing and off-center keyways; 4-axis hubs featured perfectly aligned holes and keyways that fit seamlessly into transmissions.
Fallstudie 2: Medical Device Company (Titanium Implant Stems)
- Herausforderung: Der Kunde benötigte 500 patient-specific titanium orthopedic implant stems—each with a curved outer surface, 4 side slots (for bone screws), and a polished articulating end. Tolerances were tight (±0.008mm linear, ±0.005° rotary) to ensure a perfect fit in patients’ bones. The client also required FDA-compliant documentation and a lead time of 2 Wochen (to meet urgent surgery schedules).
- Lösung: Wir haben benutzt 4-Achse CNC -Bearbeitung with B-axis (rotary around Y-axis) to machine each stem from a titanium blank. Erste, we imported the patient’s CT-scan-derived CAD model into CAM software, programming the B-axis to rotate the stem at 15° increments to access the curved surface and side slots. We used carbide end mills for milling (to handle titanium’s hardness) and mist coolant (to avoid residue on small slots). Nach der Bearbeitung, we polished the articulating end to a Ra 0.8μm surface roughness (per medical standards) und durchgeführt 100% CMM -Inspektion (verifying linear and rotary tolerances). We also prepared detailed documentation (Bearbeitungsparameter, Inspektionsberichte) Für die Einhaltung der FDA.
- Ergebnisse:
- 100% of implant stems met the tight tolerances and FDA requirements—no rejections.
- Surgeons reported a 50% reduction in implant insertion time (due to precise patient-specific fit).
- Lead time was met (2 Wochen)—ensuring patients received timely surgeries.
- Challenge Overcome: 3-axis machining would have required 4 setups for the curved surface and slots, leading to misalignment and missed deadlines. 4-axis machining’s one-setup process solved both issues.
Client -Zeugnis: “The 4-axis implants fit better than any we’ve used before. The precision and fast delivery have made them a staple in our orthopedic surgeries.” — Dr. James R., Orthopedic Surgeon.
Why Choose Our 4-Axis CNC Machining Services?
With numerous 4-axis machining providers, here’s what makes us the trusted partner for aerospace, Automobil, und medizinische Industrie:
- Expertise in 4-Axis Machining: Unser Team hat 15+ years of specialized experience in 4-axis systems—we master rotary axis operations (indexing and continuous rotation) and optimize Werkzeugpfade for every material. Our engineers are certified in CAM software (Mastercam, SolidWorks CAM) and can solve complex challenges (Z.B., aligning radial holes on gear hubs, machining curved implant stems) that other providers struggle with.
- Experience in Various Industries: Wir haben gedient 500+ Kunden über 8 industries—from small prototyping firms to Fortune 500 aerospace companies. This cross-industry experience means we understand sector-specific needs: FAA compliance for aerospace shafts, ISO/TS 16949 Für Automobilteile, and FDA regulations for medical implants. We tailor our processes to meet these strict standards.
- High-Quality Equipment: We invest in state-of-the-art 4-axis machines—10 systems with heavy-duty rotary tables (clamping force up to 8000N) and laser calibration tools (calibrated monthly to maintain ±0.005° rotary precision). All machines have automated tool changers (bis zu 30 Werkzeuge) to reduce setup time, and we use CNC software with real-time monitoring to track rotary axis performance.
- Hervorragender Kundenservice: Unser Team ist verfügbar 24/7 to support your project—from design consultation to post-delivery follow-up. We offer free CAD/CAM reviews (helping you optimize designs for 4-axis machining, Z.B., adjusting slot positions to align with the rotary axis) and free sample parts (so you can test quality before placing large orders). Für dringende Projekte (Z.B., medical implant emergencies), we assign a dedicated project manager to ensure on-time delivery.
- Schnelle Turnaround -Zeiten: Our optimized processes and equipment deliver industry-leading lead times:
- Prototypen (1–50 Einheiten): 1–3 Tage
- Low-volume orders (50–500 Einheiten): 3–7 Tage
- High-volume orders (500+ Einheiten): 7–14 Tage
Für Rush -Bestellungen (Z.B., automotive production line shortages), Wir können Teile in so wenig liefern wie 48 Std. (für kleine Chargen) by running machines 24/7.
- Kostengünstige Lösungen: We help you save money through:
- One-setup machining: Reduces labor costs by 40–50% compared to 3-axis (no need for manual repositioning).
- Werkzeugpfadoptimierung: Cuts cutting time by 20–30%, lowering electricity and tool wear costs.
- Volume discounts: 10% off orders over 1,000 units and 15% off orders over 5,000 units—ideal for automotive high-volume parts.
- Innovative Techniques: We stay ahead with cutting-edge methods:
- AI-powered CAM programming: Automatically generates optimal Werkzeugpfade für komplexe Teile (reducing programming time by 50%).
- Custom fixtures: 3D-printed fixtures for irregular parts (Z.B., Medizinische Implantate) sich verbessern rotary axis stability.
Real-time tolerance monitoring: CNC software alerts operators if rotary axis precision drifts (preventing defective parts).