303 Edelstahl: The Guide to Composition, Verarbeitbarkeit & Leistung

metal parts custom manufacturing

If you’re a manufacturer or engineer needing stainless steel that’s easy to machine without sacrificing basic corrosion resistance303 Edelstahl ist Ihre Lösung. Designed for high-volume precision parts—from fasteners to gears—303’s sulfur-enhanced formula fixes the biggest pain point of standard stainless steels: poor machinability. This guide breaks down its chemistry, properties, and real-world use, helping you cut costs and improve production efficiency.

1. 303 Edelstahl: Chemische Zusammensetzung & Alloying Elements

303 stainless steel is an austenitic grade modified with sulfur to boost machinability. Its precise chemistry balances easy cutting with basic corrosion resistance.

Schlüsselzusammensetzung der chemischen chemischen Zusammensetzung (pro ASTM/EN -Standards)

ElementInhaltsbereichRole in 303 Edelstahl
Chrom (Cr)17.0–19.0%Formen aPassivierungsschicht for rust resistance
Nickel (In)8.0–10.0%Stabilizes the austenitic microstructure (nichtmagnetisch)
Sulfur (S)0.15–0.35%Creates lubricating inclusions that reduce tool wear (the “machinability booster”)
Kohlenstoff (C)≤0.15%Controls strength; kept low to avoid carbide formation
Mangan (Mn)≤ 2,0%Improves ductility and hot working ability
Silizium (Und)≤ 1,0%Aids deoxidation during production
Phosphorus (P)≤0.20%Limited to prevent brittleness
Molybdän (MO)Optional (Spuren)Rarely added; no major impact on 303’s core traits

Grade Comparisons: Im Gegensatz zu 304 (no sulfur, better corrosion resistance) oder 17-4 PH (martensitic, hitzebehandelbar), 303 prioritizes machinability. Zum Beispiel, a fastener manufacturer switched from 304 Zu 303: tool life increased by 40%, and production time per bolt dropped by 25%.

Traceability Tip: Always request aladle analysis certificate Undheat number traceability to confirm the steel meets specs (Z.B., UNS S30300, IN 10088-1 Grad 1.4305, JIS SUS303).

2. 303 Edelstahl: Mechanisch & Physische Eigenschaften

303’s properties make it ideal for parts that need both precision machining and moderate strength. So funktioniert es:

Kernmechanik & Physische Eigenschaften (Geglühter Zustand)

EigentumTypischer WertPraktische Auswirkungen
Zugfestigkeit (UTS)620 MPA (90,000 Psi)Strong enough for gears, Bolzen, und kleine Klammern
0.2% Ertragsfestigkeit240 MPA (35,000 Psi)Resists bending in high-use parts (Z.B., Ventilstämme)
Verlängerung35% (In 2 Zoll)Ductile enough for minor forming (Z.B., bending tabs)
Härte230 Bnn / 85–95 HRBWeich genug für die Bearbeitung, hart genug zum Verschleiß
Dichte8.03 g/cm³Lightweight for small components (Z.B., electronics parts)
Wärmeleitfähigkeit16.2 W/m · k (bei 100 ° C.)Low heat transfer—good for parts near heat sources (Z.B., appliance knobs)
Electrical Resistivity0.73 µΩ·mSuitable for non-conductive applications
Magnetische Permeabilität1.02 μr (geglüht)Near non-magnetic—safe for electronics
Fatigue Endurance Limit240 MPA (at 10^6 cycles)Lasts in repetitive-motion parts (Z.B., Pumpwellen)

High-Temperature Note: 303 works well up to 870°C (1,600° F) but loses strength above that. A furnace part manufacturer tested 303 at 900°C: tensile strength dropped by 30%, so they switched to 310S for higher heat resistance.

3. 303 Edelstahl: Verarbeitbarkeit & Forming Characteristics

303’s biggest advantage is itsfree-machining ability—thanks to sulfur inclusions that act as internal lubricants. Here’s how to optimize machining:

Machinability Key Facts & Parameter

  • Bewertung der Bearbeitbarkeit: 78% (vs. 100% for B1112 free-machining steel). Das heisst 303 cuts 78% as easily as B1112—far better than 304 (30% rating).
  • Werkzeug: Verwenden Carbid -Einsätze (TiAlN or AlTiN coated) for faster speeds; high-speed steel (HSS) works for low-volume jobs.
  • Recommended Cutting Parameters:
    • Geschwindigkeit: 35–45 m/min (115–148 ft/min)
    • Füttern: 0.1–0.3 mm/rev (0.004–0.012 in/rev)
    • Tiefe des Schnitts: 1–3 mm (0.04–0.12 in)
  • Kühlmittel: Verwenden soluble oil oder minimum quantity lubrication (MQL) to reduce heat and tool wear. Avoid dry cutting—303 can gall (stick to tools) without coolant.

Tipps bilden

  • Biegen: Use a bending radius of 1–2x the material thickness (Z.B., 2mm dick 303 needs a 2–4mm radius) Um das Knacken zu vermeiden.
  • Cold Heading: Limited—sulfur makes 303 prone to splitting. Stick to machining for complex shapes.
  • Oberflächenbeschaffung: Achievable Ra 0.4–1.6 µm with proper tooling (Z.B., sharp inserts, slow feed for fine finishes).

Wirkliches Beispiel: A CNC shop machined 303 into medical device brackets. Using carbide tools and MQL, they hit Ra 0.8 µm finish and reduced tool changes from 5x to 2x per shift.

4. 303 Edelstahl: Korrosionsbeständigkeit & Umweltleistung

303’s corrosion resistance is “good enough” for most non-severe environments—but it’s not as durable as 304 oder 316.

Corrosion Performance Breakdown

UmfeldLeistungNotizen
Indoor/dry (Z.B., offices)ExzellentNo rust; passivation layer stays intact
Mild moisture (Z.B., kitchens)GutClean regularly to prevent water spots
Marine/coastal (Salzwasser)ArmSulfur inclusions attract corrosion—use 316 stattdessen
Säuren (Z.B., Essig, citrus)GerechtResists mild acids but avoid prolonged exposure
Salt spray (ASTM B117)48–96 hours (Kein roter Rost)Shorter than 304 (1000+ Std.)

Corrosion Protection Tips

  • Passivierung: Verwenden ASTM A967 Passivierung (citric acid is safer than nitric acid) to strengthen the passivation layer.
  • Electropolishing: Verbessert die Oberflächenglattheit, reducing crevice corrosion risk (good for food-contact parts).
  • Verpackung: Store 303 In VCI (volatile corrosion inhibitor) packaging to prevent rust during shipping.

Fallstudie: A furniture maker used 303 for indoor chair legs. Nach 2 Jahre, no rust appeared—but when they tested 303 outdoors, it rusted within 6 Monate. Sie wechselten zu 316 for outdoor furniture.

5. 303 Edelstahl: Schweißbarkeit & Joining Challenges

303 Istnot weld-friendly—sulfur causes hot cracking and weak welds. Here’s how to handle joining:

Weldability Limitations & Workarounds

  • Key Issue: Sulfur forms low-melting-point compounds that crack during welding (solidification cracking).
  • Not Recommended: Autogenous TIG (no filler) or MIG welding—welds will likely fail under stress.
  • Best Option: Verwenden 308L oder 312 filler metal (AWS A5.9 ER308LSi) to dilute sulfur. Preheat to ≤100°C and keep interpass temperature ≤150°C.
  • Nach der Schweiß: Anneal at 1010°C (1850° F) to reduce stress, then passivate to restore corrosion resistance.

Alternative Joining Methods

  • Mechanical Fasteners: Use A2 (304) or A4 (316) bolts—avoid welding when possible.
  • Löschen: Use Ag-Cu-Zn filler (600–700°C) for strong, corrosion-resistant joints.
  • Kleberbindung: Use epoxy adhesives for non-structural parts (Z.B., Dekorative Trim).

Warnung: A manufacturer tried TIG welding 303 gears without filler metal—50% of the gears cracked during testing. Switching to 308L filler fixed the issue.

6. 303 Edelstahl: Wärmebehandlung & Surface Hardening Options

303 is not heat-treatable for hardening, but heat treatment can improve machinability or reduce stress.

Häufige Wärmebehandlungsprozesse

VerfahrenTemperaturbereichZweck
Lösung Glühen1010–1120°C (1850–2050°F)Softens 303 for machining; restores ductility
Stress-Relief Annealing200–300°C (390–570°F)Reduces stress from machining (verhindert Warping)
Bright Annealing1010–1120°C (H2/N2 atmosphere)Creates a shiny surface (no scaling)

Surface Hardening Limitations

  • Nitriding/Nitrocarburizing: Not recommended—sulfur blocks nitrogen absorption.
  • Laser Surface Hardening: Trials show minimal hardness gain (only 5–10% increase).
  • Schuss sich angeren: Use intensity 0.008–0.012 A to improve fatigue resistance (adds 15–20% to endurance limit).

Tipp: Kaltes Arbeiten (Z.B., rollen) can raise 303’s hardness by 30–40% (Z.B., 230 BHN → 320 Bnn) but reduces ductility. Use this for parts needing extra wear resistance (Z.B., Tragrennen).

Perspektive der Yigu -Technologie

Bei Yigu Technology, Wir empfehlen 303 stainless steel for high-volume precision-machined parts like fasteners, Getriebe, and electronics components—where machinability drives efficiency. Wir liefern 303 in bars, Blätter, und Spulen (UNS S30300/EN 1.4305) with full traceability and ladle certificates. Für Kunden, we share optimized machining parameters (Z.B., carbide tool speeds, coolant types) to cut tool costs. We also warn against 303 for marine or high-corrosion uses—guiding clients to 316 stattdessen. Unser 303 undergoes salt spray testing (96 Std., no rust) to ensure basic corrosion performance for indoor/outdoor non-severe applications.

FAQ

  1. Kann 303 stainless steel be used for food-contact parts?
    Yes—if passivated (per FDA standards) and used in dry/mild moisture environments. Avoid it for acidic food processing (Z.B., tomato canning) or wet food prep (Z.B., commercial sinks)—304 is better for those.
  2. Why is 303 stainless steel harder to weld than 304?
    303 has sulfur added for machinability, but sulfur forms low-melting compounds that crack during welding (solidification cracking). 304 has no sulfur, so its welds are stronger and more crack-resistant.
  3. What’s the difference between 303 and 303Se stainless steel?
    303Se uses selenium instead of sulfur to boost machinability. It has slightly better corrosion resistance than 303 (selenium inclusions are less corrosive than sulfur) but costs 10–15% more. Use 303Se for parts needing both machinability and slightly better rust resistance.
Scrollen Sie nach oben